
An evolutionarily conserved scheme for
reformatting odor concentration in early

olfactory circuits
Yang Shen1,†, Arkarup Banerjee1,†,*, Dinu F. Albeanu1,*, and Saket Navlakha1,*

1Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
†These authors contributed equally

*Correspondence authors

Understanding how stimuli from the sensory periphery are pro-
gressively reformatted to yield useful representations is a fun-
damental challenge in neuroscience. In olfaction, assessing odor
concentration is key for many behaviors, such as tracking and
navigation. Initially, as odor concentration increases, the aver-
age response of first-order sensory neurons also increases. How-
ever, the average response of second-order neurons remains flat
with increasing concentration – a transformation that is be-
lieved to help with concentration-invariant odor identification,
but that seemingly discards concentration information before
it could be sent to higher brain regions. By combining neural
data analyses from diverse species with computational model-
ing, we propose strategies by which second-order neurons pre-
serve concentration information, despite flat mean responses at
the population level. We find that individual second-order neu-
rons have diverse concentration response curves that are unique
to each odorant — some neurons respond more with higher con-
centration and others respond less — and together this diver-
sity generates distinct combinatorial representations for differ-
ent concentrations. We show that this encoding scheme can be
recapitulated using a circuit computation, called divisive nor-
malization, and we derive sufficient conditions for this diver-
sity to emerge. We then discuss two mechanisms (spike rate vs.
timing based) by which higher order brain regions may decode
odor concentration from the reformatted representations. Since
vertebrate and invertebrate olfactory systems likely evolved in-
dependently, our findings suggest that evolution converged on
similar algorithmic solutions despite stark differences in neu-
ral circuit architectures. Finally, in land vertebrates a parallel
olfactory pathway has evolved whose second-order neurons do
not exhibit such diverse response curves; rather neurons in this
pathway represent concentration information in a more mono-
tonic fashion on average, potentially allowing for easier odor lo-
calization and identification at the expense of increased energy
use.

olfactory circuits | odor concentration | divisive normalization | computational
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Introduction
A central task of sensory systems is to reformat represen-
tations of sensory stimuli to efficiently encode key stimulus
features. For example, in vision, brightness information cap-
tured by the retina needs to be preserved along the visual
pathway to facilitate accurate perception of light intensity
and contrast in the environment (1). Similarly, in audition,

sound intensity captured by hair cells in the cochlea needs to
be preserved to facilitate behaviors that require sound local-
ization (2). While these transformations are well-studied for
visual and auditory stimuli (3–7), much less is known about
analogous transformations in the olfactory system. The abil-
ity to reliably estimate odor concentration (i.e., how much of
an odor is present) is critical for olfactory navigation across
species (8, 9). Here, we investigate the transformation of this
key feature by early olfactory circuits.
Reliably tracking odor concentration is challenging (10).
Based on receptor-ligand interactions, first-order (sensory)
neurons increase their firing rates as odor concentration in-
creases (11–15), such that the population activity of sensory
neurons scales with odor concentration. However, this comes
at a cost of odor discrimination, as representations become
increasingly overlapping at high concentrations (16–19). In
contrast, the average population activity of second-order and
third-order neurons remains relatively flat over concentra-
tion changes that vary over many orders of magnitude (20–
22). This property is thought to be critical for concentration-
invariant identification of an odorant (20, 23–25). However,
this creates a conundrum: if concentration information is dis-
carded in second-order neurons, which exclusively transmit
odor information to the rest of the brain, how does the brain
support olfactory behaviors, such as tracking and navigation?
By combining neural data analyses from diverse species with
computational modeling, we provide a resolution to this issue
and offer four contributions: First, we show how concentra-
tion information can be represented in second-order neurons,
despite mean response flatness at the population level, and
we show that this property is conserved across three species
(locusts, zebrafish, and mice). Second, we demonstrate that
a unitary circuit computation — divisive normalization —
can generate all primary features of the reformatted second-
order neuron representation given sufficient conditions on
first-order responses. Third, we describe how this reformat-
ted representation can be used to decode odor concentration
using two biologically plausible strategies (rate-based and
time-based decoding), and we discuss decoding constraints
imposed by each scheme. Fourth, in land vertebrates, evolu-
tion has invented a parallel olfactory pathway whose response
properties are much closer to those of first-order neurons; i.e.,
responses of second-order neurons in this pathway scale with
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concentration. We show that this representation substantially
improves concentration decoding and odor localization (26),
albeit with higher energy costs. Moreover, we hypothesize
that the emergence of a parallel pathway in land vertebrates,
in conjunction with the presence of long-range cortical feed-
back loops, may have afforded neurons of the first pathway to
carry out higher-order computations extending beyond sim-
ply representing sensory features.
Together, this study provides a unified theoretical framework
for understanding how concentration information is reformat-
ted by early olfactory circuits separated by several hundred-
million years of evolution, from insects to mammals. Given
the likely independent evolution of olfactory systems in ver-
tebrates and invertebrates, our results suggest that evolution
has converged to a common algorithm despite differences in
the underlying circuit implementations.

Results
Olfaction begins with olfactory sensory neurons (OSNs) that
each expresses a single type of odorant receptor protein that
binds with specific odor molecules (Fig. 1A). These first-
order neurons transmit odor information to second-order neu-
rons, such as projection neurons in insects, or mitral cells in
vertebrates. The activity of second-order neurons is a combi-
nation of first-order neuron activity, as well as interneuron
modifications (e.g., from local interactions in the antennal
lobe of insects (27), or from local interactions in the olfac-
tory bulb and long-range feedback in vertebrates (28–30)).
Only second-order neurons project to the rest of the brain
(e.g., the mushroom body in insects, the olfactory cortex in
vertebrates), which subsequently orchestrate complex olfac-
tory behaviors, such as odor discrimination and tracking (31).
Hence, it is critical for second-order neurons to preserve key
features of odors, including their identity and concentration.
To determine if there is a conserved strategy of encoding odor
concentration in olfactory circuits, we studied odor responses
of first- and second- order neurons across several species.
For first-order neurons, we re-analyzed data from fruit flies
(24 odorant sensory neurons to 9 fruit odors across 4 con-
centrations (32), spanning 6 orders of magnitude in relative
dilution) and mice (47 glomeruli to 5 odors across 4 concen-
trations (33), spanning 3 orders of magnitude). For second-
order neurons, we re-analyzed data from locusts (110 projec-
tion neurons to 3 odors at 5 concentrations (21), spanning 3
orders of magnitude), mice (392 mitral cells to 5 odors at 4
concentrations (34), spanning 3 orders of magnitude) and ze-
brafish (358 mitral cells to 1 odor at 5 concentrations (22),
spanning 4 orders of magnitude).

Shared properties of odor concentration encoding in
second-order neurons. We observed two common proper-
ties of odor representations in second-order neurons across
all three species (Fig. 1B–D, top panels).
First, for each odor, the average population response of
second-order neurons remains nearly flat across concentra-
tions that range 3–4 orders of magnitude. The fitted slopes
of average responses of second-order neurons across increas-

ing concentration levels are significantly lower than those
of first-order neurons (Fig. 1E), consistent with previous re-
sults (21, 22, 33–36).
Second, the response curves of individual second-order neu-
rons across increasing concentration levels have diverse
shapes (Fig. 1B–D, bottom panels). We quantified the diver-
sity of each neuron’s concentration response curve by com-
puting the slopes between responses across concentration
levels. The change in response across consecutive concentra-
tion levels may not be robust due to experimental noise and
the somewhat limited range of concentrations sampled. Thus,
for better illustration and ease of analysis, we computed the
slopes between responses separated by 2 dilution levels, cor-
responding roughly to a 100x range in concentration. For
example, the two slopes per neuron were computed using re-
sponses from concentration level 3 to level 1 and from level 4
to level 2. We defined the neuron to have a monotonically in-
creasing (or decreasing) concentration response shape if both
slopes are positive (negative). Non-monotonic concentration
response shapes represent responses that increase and then
decrease, or that decrease and then increase. We then cal-
culated the angle between these two slopes for each neuron
and plotted a polar histogram of these angles over all neurons
(Fig. S1). Each quadrant of the polar histogram represents
one of the four possible shapes (top right: monotonically in-
creasing, top left: decrease then increase, bottom left: mono-
tonically decreasing, bottom right: increase then decrease),
and the percentage shown in each quadrant shows the per-
centage of neurons with the corresponding shape. We found
diverse response shapes for second-order neurons in all three
species (Fig. 1B–D). For example, for projection neurons in
locust, 30.6% of neurons monotonically increased (top right
quadrant), 26.3% monotonically decreased, 20.6% decreased
then increased, and 22.5% increased then decreased. The re-
sponse shapes were similarly spread over the four quadrants
for mitral cells in both mice (40.0%, 19.4%, 16.6%, 24.0%)
and zebrafish (40.8%, 30.7%, 13.4%, 15.1%). Thus, even
though the average responses of second-order neurons are flat
across concentrations, the response shapes of individual neu-
rons are diverse.
In summary, two properties of second-order neuron responses
across concentrations — flat average response of the popula-
tion and diverse response shapes of individual neurons — are
shared across locusts, zebrafish and mice.

Divisive normalization recapitulates two ubiquitous
properties of second-order olfactory neurons. How
might such diverse shapes be generated from first-order neu-
rons that respond more monotonically (37, 38)? One clue is
the mean flatness of second-order responses, which hints at
some type of normalization mechanism. We explored three
commonly described mechanisms (22, 36, 39, 40) — divisive
normalization (DN), subtractive normalization (SN), and in-
traglomerular gain control (IGC). Both divisive and subtrac-
tive normalization are global schemes based on population
level activity, whereas intraglomerular gain control is a local
normalization scheme where the activity of a neuron is nor-
malized by only its own activity. We tested whether these
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Fig. 1. Second-order neurons across species demonstrate two common properties: flat average response of the population and diverse response shapes of
individual neurons. (A) Illustration of the early olfactory circuit across species. (B–D) Example responses of second-order neurons in locust (to odor geraniol), zebrafish
(phenylalanine), and mice (valeraldhyde), respectively. Top: individual neuron response curves across concentrations. Middle: mean population responses across concentra-
tions. Bottom: polar histogram showing the distribution of individual neuron response shapes for all odors combined. The x-axis shows the slope between neuron response at
concentration level 1 (lowest) to concentration level 3, and the y-axis shows the slope from concentration level 2 to concentration level 4 (highest). The angle of the bar shows
the direction of the vector formed by these two slopes, and the length of the bar shows the percentage of neurons with the same angle. Top right quadrant: monotonically
increasing responses; top left quadrant: decreasing then increasing; bottom left quadrant: monotonically decreasing; bottom right quadrant: increasing then decreasing. (E)
Fitted slopes for mean population responses across concentrations for first- and second- order neurons. Each dot represents a single odor. First two columns show data
collected in mice, and dashed lines connect the same odor. The third column shows all odors tested in locust and zebrafish combined. T-test is performed between the slopes
formed by first- and second- order neurons; *** p-value < 0.001.

normalization mechanisms could generate the two proper-
ties of second-order neurons described above (flat average
response of the population and diverse response of individ-
ual neurons, across concentration levels) starting from exper-
imentally observed first-order neuron responses in fruit flies
and mice (Fig 2Ai–Aii).
Divisive normalization divides the activity of a single neuron
by the summed population activity (22, 36):

di = rmax
( rni
σn+ rni +k(

∑
j rj)n

)
, (1)

where di is the activity of the ith second-order neuron, ri is
the activity of the corresponding ith first-order neuron, rmax
is the estimated maximum response of first-order neurons
(determined individually for each dataset), σ > 0 controls the
neuron’s sensitivity to normalization, k ∈ (0,1) controls the
strength of normalization, and n > 0 controls the shape of
normalization curve. See Methods for parameter settings and
equations for SN and IGC.
We found that after divisive normalization was applied to
experimental first-order neuron responses, the simulated
second-order neuron responses became significantly flatter
over concentrations in both flies (1st order neuron slopes:
0.05± 0.01 vs. 2nd order slopes: 0.000023± 10−4; p <
0.001, Fig. 2Bi, Ei) and in mice (1st order: 0.08± 0.01 vs.
2nd order: 0.02± 0.01; p < 0.01, Fig. 2Bii, Eii). Thus, the
average population responses of the simulated second-order
neurons are nearly flat across concentrations, generating the
first property. For the second property, we found that simu-
lated second-order response shapes become more uniformly
distributed in the polar plot histogram compared to those of
first-order neurons. For example, the percentage of monoton-
ically increasing neurons dropped from 58.3% in first-order

neurons to 29.2% in second-order neurons in flies (Fig. 2Bi)
and from 70.0% to 50.0% in mice (Fig. 2Bii). Thus, divisive
normalization can reproduce both properties of second-order
neurons.
In contrast, neither subtractive normalization nor intra-
glomerular gain control reproduce both properties of second-
order neurons (Fig. 2C–E). Subtractive normalization reca-
pitulates mean flatness at the population level in a relatively
small parameter window (at the cost of silencing a large por-
tion of neurons); however, it cannot reliably reproduce di-
verse response curves. Intraglomerular gain control fails to
generate either property.
While divisive normalization has been previously shown to
generate flat mean responses at the population level (22, 36),
its role towards generating diverse concentration response
curves has not been appreciated, and this latter property, as
we will show, is critical towards decoding concentration lev-
els downstream.

Sufficient conditions for generating diverse concen-
tration response curves via divisive normalization. Do
these two properties inevitably arise as a result of divisive
normalization applied to any first-order neuron responses, or
do first-order responses need to have certain structure them-
selves? To answer this question, we synthesized concentra-
tion response curves for first-order neurons. These responses
(r) to logarithmic scale concentration levels (x) follows the
logistic function (37, 38):

ri =Ri

( 1−si
1 + exp(−ai(x− bi))

+si

)
, (2)

whereRi is the saturation level of neuron i, a controls the rate
of saturation, b determines the location where the response of
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Fig. 2. Responses of simulated second-order neurons recapitulate the two common properties. (Ai–Aii) Example experimentally measured responses of first-order
neurons in fruit flies (apple odor) and mice (heptanal). (Bi–Bii) Simulated responses of corresponding second-order neurons after applying divisive normalization (DN) to
first-order neurons. The top two rows show results of a single example odor, while the bottom row (the polar plots) show all odors combined. (Ci–Cii) Same as B but after
applying subtractive normalization (SN). (Di–Dii) Same as B after applying intraglomerular gain control (IGC). (Ei–Eii) Fitted slopes for the mean population response across
concentrations for first-order neurons, as well as simulated second-order neurons after IGC, SN, or DN is applied. Each dot represents an odor. Dashed lines connect the
same odor across normalization methods. Paired t-test is performed between the slopes formed by first- and second- order neurons; *** p-value < 0.001, ** p-value < 0.01.

the neuron reaches half-maximum, and s is a small positive
parameter representing the amount of spontaneous activity in
the absence of stimuli.
We explored two classes of first-order neuron concentration
responses. The first class does not exhibit cross-overs; i.e.,
the rank order of neurons, from the highest response ampli-
tude to the lowest, remains the same across all concentra-
tions. The second class of concentration responses exhib-
ited cross-overs, which are closer to experimental first-order
neuron responses due to combinatorial odor binding proper-
ties of OSNs (12–15, 32, 41). Here, the response amplitude
ranks change, reflecting different rates of activity increase in
neurons despite the overall trend of increasing. To simulate
no cross-over responses (Fig. 3A), the values of a, b, and s
are fixed for all neurons. To simulate cross-over responses
(Fig. 3B), each simulated neuron has different values of a,
b, and s sampled from independent uniform distributions.
For both classes, the saturation level (R) is sampled from a
Gamma distribution, which fits the experimentally observed
activities of first-order neurons (Methods). By construction,
for both classes, individual and average first-order neuron re-
sponses grow monotonically with increasing concentration

level (Fig. 3A–B).
We found that the observed diversity of response curves in
second-order neurons could only be reproduced after ap-
plying divisive normalization to first-order responses that
had cross-overs, as opposed to no cross-overs (Fig. 3C–D).
Specifically, for the former, the bars in the polar plot his-
togram of second-order neuron responses span all quadrants,
whereas for no cross-over responses, the bars are exclusively
located in the upper-right quadrant (i.e., monotonically in-
creasing).
Why do diverse response curves emerge only from cross-over
first-order responses? Divisive normalization (Eqn. Eq. (1))
effectively calculates the relative contribution of a neuron —
i.e., its activity divided by the total activity of all neurons in
the population – since the summation term k(

∑
j rj)n dom-

inates the σn + rni term in the denominator. Therefore, di-
visive normalization mostly does not alter the relative con-
tribution (rank order) of each neuron in the ensemble. To
create diverse shapes in second-order neurons, the first-order
neurons must themselves increase their responsiveness with
sufficient diversity (faster or slower, or steeper vs. shallower,
compared to the average changes in activity of the popula-
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tion) such that their rank orders change across concentration
levels. Biologically, as concentration increases, cross-overs
emerge as a consequence of competing growth rates of in-
dividual first-order neurons versus the population. In sum-
mary, cross-over first-order responses are sufficient for divi-
sive normalization to generate non-monotonic responses in
second-order neurons.

Two complementary schemes of decoding odor con-
centration from populations of second-order neurons.
How can higher order brain regions decode concentration
information from second-order neurons that have flat mean
responses, but diverse individual concentration response
curves? We discuss two potential strategies, one using firing
rate information and the other using spike timing informa-
tion.
First, we explored how concentration information can be de-
coded from the diverse shapes of response curves of second-
order neurons. We used a simple multi-class logistic re-
gression model to predict the concentration of an odor using
the experimental odorant response activities of second-order
neurons, where the model was trained using all but one trial
and tested on the held-out trial (Methods). We found that
accuracies were nearly-perfect in all three species (Fig. 4A):
100± 0% in locusts, 96± 4% in zebrafish, and 97± 4% in
mice (chance accuracy is 25% for data with four concentra-
tion levels, and 20% for five concentration levels). More-
over, this decoding accuracy is on par with that derived us-
ing first-order neuron responses (Fig. 4B) and corresponding
simulated responses of second-order neurons after divisive
normalization is applied (Fig. 4C). Hence, divisive normal-
ization reformats concentration information, so that it is no
longer coded by the amplitude of mean population responses,
but by the diverse shapes of response curves. In other words,
each concentration level has its own combinatorial code in
second-order neurons, allowing for the concentration to be
decoded.
Second, we considered a complementary scheme by which
odor concentration can be decoded using information in the
time-domain. Latency or primacy coding (42–44) proposes a
mechanism to achieve concentration-invariant odor recogni-
tion by using information in only a few second-order neurons
that have the highest affinity to an odor, i.e., neurons that re-
spond early and stably to the odor across concentrations. To
determine if this mechanism could in addition decode con-
centration levels, we simulated the temporal responses of 200
first-order neurons to three concentration levels of an odor
using logistic functions with different parameter values; e.g.,
one parameter value controls the sensitivity of the response
curve (Fig. 4D; Methods). After divisive normalization, the
logistic response curves of first-order neurons transformed
into non-monotonic curves (Fig. 4E). This agrees with the
temporal response shapes of second-order neurons observed
experimentally (45, 46).
We report three observations from these simulations. First,
the set of second-order neurons with the highest-affinities
(where affinity is based on the time latency of response) re-
mained almost the same across concentrations levels: the Jac-

card similarity between the sets of highest-affinity neurons
for each pair of concentration levels was > 0.96, Fig. 4F).
Second, the average timing of the peak response (i.e., the re-
sponse latency) of these primacy neurons, decreased as con-
centration increases (Fig. 4G). This is not surprising and is
simply meant to model the binding of odorants to odorant
receptors with its resulting inverse correlation between re-
sponse amplitude and latency (higher amplitude → shorter
latency) (47). Third, critically, the rank orders of the set
of primacy neurons were scrambled across concentrations,
due to cross-over responses of corresponding first-order neu-
rons. For the 10 and 50 highest-affinity neurons responding
to the high concentration level, 7 (70%) and 32 (64%) shifted
ranks, respectively, compared to their corresponding ranks at
low concentration; for all 200 simulated neurons, 164 (82%)
shifted ranks from high to low concentration (Fig. 4H).
These observations have major implications for both
concentration-invariant odor identification and odor concen-
tration decoding by third-order neurons under the primacy
model. Odor identity can be encoded by the set of highest-
affinity neurons (which remains invariant across concentra-
tions); however, the downstream read-out mechanism must
not be sensitive to their rank order. Odor concentration can be
encoded using either the average response latency of neurons
(which scales with concentration), or alternatively, by learn-
ing to associate different temporal sequences of neuronal re-
sponses with different concentrations.
Hence, two complementary strategies emerge in decoding
odor concentration by higher-order brain regions. Divisive
normalization, operating in antennal lobe (insects) or ol-
factory bulb (mammals) circuits, is a potential mechanism
for generating odor-specific subsets of second-order neurons
whose combinatorial activity or whose response latencies
represents concentration information. Importantly, in both
schemes, some form of learning within downstream neural
circuits is required.

A parallel pathway for odor representation in land ver-
tebrates better supports odor localization. Locating an
odor source is essential for survival in the wild. While olfac-
tory navigation over large distances can be solved by serial
sniffing (48), at close distances rodents rely more on stereo
olfaction to localize stimuli (49–52). This requires that the
brain quickly determine: 1) if there exists a difference in odor
concentrations between two sniffs or between signals from
two nostrils in a single sniff; 2) if there is a difference, which
sniff/nostril sensed a higher concentration; and 3) how strong
the difference is.
We showed above that odor concentration could be decoded
from second-order neurons, but the proposed mechanisms
require additional learning in downstream neural circuits,
which may be slow. Odor localization may be achieved more
easily and quickly (e.g., by a simple comparator across nos-
trils) if a direct copy of concentration information, where
neuronal responses increase monotonically with concentra-
tion, could be stored beyond first-order neurons.
Indeed, evolution has discovered a parallel pathway in land
vertebrates involving an additional type of second-order neu-
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Fig. 3. Sufficient conditions to generate diverse concentration response shapes using divisive normalization. (A–B) Simulated response curves of first-order neurons
across concentration levels. Two classes of first-order responses are considered: those with cross-overs and those without cross-overs. Left: single neuron response curves
and population average across four simulated concentration levels. Center: polar histogram for the shapes of response curves. Right: rank order of neuron activities at
each concentration level (neurons are sorted according to response strength at the lowest nominal concentration, and the same indexing is preserved across the higher
concentrations). (C–D). Same as A and B but showing the responses of simulated second-order neurons after divisive normalization is applied to first-order neurons.

ron — the tufted cells. Compared to mitral cells, tufted cells
on average respond faster and more reliably to lower con-
centrations of an odorant, and their activity increases nearly
monotonically with increasing odor concentration (19, 26,
53–57) (Fig. 5A–B), resembling first-order neuron (glomeru-
lar) activity. Previous work showed that tufted cell ensembles
outperform mitral cell ensembles in concentration classifica-
tion and odor generalization tasks (26).

Here we show that in addition to these tasks, tufted cells
are better suited to solve the stereo odor localization prob-
lem (Fig. 5C, left). We re-analyzed second-order neurons
in mice (34), consisting of 392 mitral cell and 387 tufted
cell responses to 5 odors across 4 concentration levels that
span 3 orders of magnitude in relative dilution. We found
that the same concentration change causes a significantly
larger change in tufted cell responses compared to mitral
cells (Fig. 5D). This predicts that tufted cells should bet-
ter discriminate smaller concentration changes. Relying on
experimentally measured fall-off of concentration with dis-
tance from an odor source (Fig. 5C, right), we indeed find
that the tufted cells are better at resolving smaller distances
— the same increase in the distance from the odor center
would lead to larger change in tufted cell activity compared
to mitral cells (Fig. 5E–F). However, this increased perfor-
mance comes at a cost; the average population activity level
of tufted cells is roughly three times higher than in mitral
cells (0.03± 0.01 for mitral cells vs 0.09± 0.03 for tufted
cells), indicating that tufted cells consume more energy than
mitral cells. Thus, we posit that the evolution of the tufted

cell output channel traded-off energy for faster and finer con-
centration discrimination, which is essential for odor tracking
and navigation in land vertebrates.

Discussion
Summary of findings. Differentiating odor concentration is
critical for olfactory behaviors, including odor-based naviga-
tion and localization. First-order olfactory neurons exhibit
increasing responses to higher levels of concentration, but
second-order neurons on average remain flat across many or-
ders of magnitude of concentration fluctuations. Such con-
centration invariance is thought to be beneficial for identify-
ing odorants independent of concentration (20, 25). How-
ever, under this model, it has remained unclear how odor
concentration information can be readily accessed by higher
brain regions to guide behavior and decision-making. Our
analysis, based on previous experimental work (22, 33, 35,
36), shows that circuits in the early olfactory system across
species (locusts, zebrafish, and mice) normalize overall ac-
tivity of second-order neurons, while also retaining adequate
diversity in the individual second-order neuron concentration
response curves: some neurons increase or decrease their ac-
tivity monotonically with concentration, whereas others re-
spond non-monotonically. This diversity enables individual
concentration levels to be encoded combinatorially, which
can then be decoded using spike rates or spike times. More-
over, we analyzed an additional type of second-order neuron
(tufted cells) that has evolved in land vertebrates and that out-
performs mitral cells in concentration encoding (26) and odor

6 | bioRχiv Shen et al. | reformatting odor concentration information in early olfactory circuits

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2025. ; https://doi.org/10.1101/2025.01.23.634259doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.23.634259
http://creativecommons.org/licenses/by-nc/4.0/


Simulated 1st order neuron Simulated 2nd order neuronD FE

G H

2nd order Neurons

A

1st order Neurons

B

After DN

C

Fig. 4. Divisive normalization reformats concentration representations in the rate and time domains. (A) Accuracy for concentration classification using experimental
responses of second-order neurons (left: locust; center: zebrafish; right: mice). The concentration levels of each odor are classified independently per odor. Reported are
the average accuracy across all odors, and error bars show standard deviations. Dashed line shows the accuracy level for random guess (0.2 for locust and zebrafish, 0.25
for mice). (B) Same as A but for experimental first-order neurons in fruit flies and mice. (C) Same as A but after divisive normalization applied to first-order responses in B.
(D) The temporal response curves of simulated first-order neurons to an odor. Neurons with different affinity to this synthetic odor are highlighted (high affinity: blue; medium
affinity: red; low affinity: cyan). (E) Same as D, after divisive normalization is applied. (F) Jaccard similarity between the sets of the 50 earliest-responding neurons for each
pair of concentration levels. The value of Jaccard similarity ranges between 0 and 1; 1 means the two sets of neurons contain identical neurons, and 0 means they share no
neurons in common. (G) The time when the 50 earliest-responding neurons respond under each concentration level. The neurons are sorted by their peak time under low
concentration. (H) Rank of neurons under low concentration based on their time of peak response (y-axis) vs. rank of neurons under high concentration (x-axis).

localization tasks. Indeed, recent work suggests that the ante-
rior olfactory nucleus, which gets stronger input from tufted
cells than mitral cells, plays a central role in decoding odor
concentration (26, 58). These results suggest a trade-off be-
tween concentration decoding and normalization processes,
which prevent saturation and reduce energy consumption.
What might be the benefits of evolving a parallel second-
order output channel (tufted cells) in land vertebrates? We
speculate that this alternative pathway may have enabled
mitral cells to evolve new functionalities. By combining
sensory information from first-order neurons with feedback

from higher brain regions, mitral cells may be ideally suited
to perform learning-dependent computations beyond simply
relaying sensory input, such as predictive processing or
integrating context within decision-making (59). It is also
possible that the brain uses multiple concentration decoding
strategies in parallel, depending on the complexity of the
olfactory scene and the behavioral needs of the moment.
Overall, our findings highlight the importance of an evo-
lutionarily conserved computation in odor coding and how
the key feature of odors is efficiently preserved along the
olfactory pathway.
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Fig. 5. A parallel olfactory pathway in land vertebrates provides improved concentration decoding. (A) Top: concentration response curves of individual tufted
cells to a single odor (valeraldhyde). Bottom: average population responses for mitral (MC, blue) and tufted (TC, red) cells. (B) Polar histogram showing the distribution
of concentration response shapes MCs and TCs for all five odors combined. (C) Left: Cartoon illustration for the odor localization task. Right: estimated decrease in odor
concentration as distance from the odor source increases. (D) Change in average population neuron activities across all pairs of concentrations. The x-axis shows the
absolute value of difference in the relative dilution (in order of magnitude) between the two concentration levels. The y-axis shows the change in activity. Results are averaged
over five odors, and the shaded area shows the 95% confidence intervals. (E) Estimated change of neural activities as the distance between the odor source and the animal’s
location increases for mitral cells (left) and tufted cells (right). Each dot shows a particular concentration for an odor. There are 20 dots in total (4 concentrations x 5 odors).
Each opaque line is a linear regression calculated based on all concentrations of a given odor, and the darker lines are the average over all odors. (F) Slopes for the linear
regression lines shown in E. Each dot represents an odor. The value of the slope is an estimate of neural sensitivity to the change in distance to the odor source. The higher
the slope, the higher the sensitivity.

Mechanisms for concentration decoding. Both concentra-
tion decoding schemes proposed here (spike-based and time-
based) require learning in downstream circuitry — i.e., third-
order neurons need to learn which temporal sequences of
neurons are to be associated with each concentration level
of an odor. This sequence may be further altered by noise
present in natural environments, which may lead to addi-
tional variability across repeated observations of the same
odorant concentration. Experimental results indeed show
that while some neurons remain rank-stable, different sub-
sets of early responding secondary neurons are silenced or
start firing at higher vs. lower concentrations of the same
odor (19, 26, 42, 60). As such, a substantial fraction of
second-order neurons change rank depending on the con-

centration range and odor identity. In addition, the spiking
temporal integration window of third-order neurons in down-
stream brain regions ought to be small enough to read-out
the temporal shifts in response latencies across concentra-
tions for primacy neurons. The complementary combinato-
rial response (firing rate) scheme also necessitates learning:
different third-order neurons need to be associated, presum-
ably via synaptic plasticity, with different concentrations of a
given odorant. The feasibility of the learning algorithms for
both decoding schemes remain to be tested experimentally.

Our work does not rule out alternative mechanisms for
encoding concentration in olfactory circuits. For example,
concentration can be encoded via the total activity in the
trigeminal nerve, through the different latencies between
the medial and lateral olfactory bulb under different con-
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centrations (61), or via temporal integration via serial sniffs
(counting the total number of odor packets over multiple
sniffs) (48, 62).

Experimental predictions. Our work raises two testable
experimental predictions about the effects of disrupting
circuitry involved in implementing divisive normalization
on downstream encoding and behavior. First, the properties
of second-order neurons, such as mean-flatness and diverse
concentration response shapes enabled by divisive normal-
ization, would disappear if the neural circuitry supporting
divisive normalization is suppressed. In insects, experimen-
tal evidence suggests that divisive normalization is likely
achieved through the network of inhibitory interneurons in
the antennal lobe (63). In vertebrates, divisive normalization
is likely implemented by short-axon cells (GABAergic-
dopaminergic inhibitory cells in the olfactory bulb), whose
axons provide interglomerular crosstalk (22, 33, 64–68).
Indeed, three properties of short-axon cells in the olfac-
tory bulb make them ideally suited to implement divisive
normalization: odor responses of short-axon cells scale
monotonically with concentration, they functionally inhibit
mitral cells, and crucially, ablating these neurons shift the
concentration response curves of mitral cells from being
diverse to becoming more monotonic (33). Concomitantly,
this loss of diverse response shapes in second-order neurons
may hinder fine concentration discrimination of the same
odor. Second, for mammals, prior work has hypothesized
that concentration-invariant encoding requires recurrent
processing in the piriform cortex (20, 44). In contrast, our
results predict that concentration invariant neural responses,
the diversity in individual neuron concentration responses,
and the proposed latency/primacy representations for odor
identification emerge due to computations within the olfac-
tory bulb. Consequently, we predict that these properties will
persist even after inactivating the cortex.

Evolutionary conserved transformation of concentration
encoding. Is there a shared computation employed by early
olfactory circuits from flies to mammals to generate our pro-
posed concentration encoding scheme? Our results indicate
that divisive normalization is sufficient to explain two ex-
perimentally observed properties of second-order neurons:
flat mean responses and diverse individual concentration re-
sponse curves. As noted above, experimental evidence sug-
gests that divisive normalization is implemented by distinct
inhibitory circuits in the antennal lobe in insects vs. the ol-
factory bulb in mammals. Thus, while the circuit implemen-
tation of this transformation may be different across species
that diverged over 100 million years ago, invoking Marr,
the algorithmic description appears to be conserved. Given
that the invertebrate olfactory receptors have evolved inde-
pendently from those of vertebrates, our results also imply
a functional convergence shaped by similar computational
goals. Finally, in machine learning, applying divisive nor-
malization to early encoding layers generates efficient coding
representations (69, 70) that accelerate network training (71),

revealing the broad applicability of this transformation in
both biology and engineering.
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Methods
Analysis of experimental data
Mice. The experimental data was published in Chae et al.
(26) (2022). Briefly, head-fixed, naïve mice were presented
with 5 odors at 4 concentration levels (across three orders of
magnitude), and two-photon calcium imaging was performed
to measure responses from 392 mitral cells and 387 tufted
cells. We also re-analyzed a dataset consisting of neuronal
responses from 47 glomeruli to the same odor panel (33).
Each measurement was repeated for 4-6 trials for each odor
at each concentration. For each measurement, a monomolec-
ular odor was presented for 4s, preceded by 10-12s of
air baseline, followed by 7-10s air recovery. Responses
(df /f ) were calculated based on the air baseline period,
which was determined for each neuron independently.
Neuronal responses for each cell-odor pair were defined as
the average df /f over the entire odor period. Data from
all field of views and all odors were combined in our analysis.

Zebrafish. The zebrafish data was published by Zhu et al.
(22) (2013). We re-analyzed calcium imaging responses
of 358 mitral cells to a single odor across 5 concentration
levels. Mean neuron responses were defined as the df /f for
the period after odor onset (about 2s).

Locust. The locust data was published by Stopfer et al. (21)
(2003). We re-analyzed spiking activity of 110 projection
neurons in response to 3 odors across 5 concentration levels
per odor. Each experiment was repeated for 15 trials. Each
trial began with a 2s air baseline period, followed by odor
presentation for 1s.

Fruit fly. The Drosophila data was published by Hallem
and Carlson (32) (2006). Spiking activity of 24 ORNs to 9
fruity odors across 4 concentrations were measured. Each
ORN measurement was made in a different animal. All
analyses were based on average responses of single neurons
across the 6 trials (as shown in Table S2 of Hallem and
Carlson (32)), except for the classification task of concentra-
tions (Fig. 4B-C), in which the 6 trials were used individually.

Selecting responding neurons. For a given odor and given
concentration, a significant neuronal response was deter-
mined by activity 2 standard deviations higher than the
baseline rate for at least 20% of the trials (e.g., at least 3
trials out of total 15 trials, or 100% of the trials if there is
only one trial). Additionally, if a neuron responds to at least
one concentration for a given odor, the neuron is considered
to be responding to the given odor. Only responding neurons
are used for analysis.

Normalization methods
Divisive Normalization (DN). Divisive normalization is per-
formed according to the equation below:

di = rmax
( rni
σn+ rni +k(

∑
j rj)n

)
,

where di is the activity of the ith second-order neuron, ri
is the activity of the corresponding ith first-order neuron,
rmax is the estimated maximum response of first-order
neurons (determined individually for each dataset), k is a
parameter controlling the strength of normalization, and
n is a parameter controlling the shape of normalization
curve. We fix n = 1.5 following Olsen et al. (36), and we
fix k = 0.1, though we find no qualitative differences in our
conclusions using different values of k (Fig. S2). Similarly,
we use σ = 12 for the Drosophila data following Olsen
et al. (36), and σ = 1 for all other datasets. This model
of divisive normalization was modified from Olsen et al. (36).

Intraglomerular Gain Control (IGC). Intraglomerular trans-
formation modulates the responsiveness of a neuron based
only on its own response as:

gi = rmax
rni

σn+ rni
,

where ri is the activity of the ith first-order neuron, and gi
is the normalized activity of the corresponding second-order
neuron. All other constants are fixed as above.

Subtractive Normalization (SN). In subtractive normaliza-
tion, each second-order neuron receives inhibition from in-
terneurons proportional to the sum of first-order neuron ac-
tivities:

si = max(0,k
∑
j

rj),

where k is the parameter controlling the strength of normal-
ization, ri is the activity of the ith first-order neuron, and si
is the normalized activity of the corresponding second-order
neuron. We fix k= 1/N for subtractive normalization, where
N is the number of first-order neurons.

Fitting slopes for mean population responses. The slopes of
population mean responses (Fig. 1E, Fig. 2Ei–Eii) are fitted
in a log-linear manner using LinearRegression function in the
sklearn library of Python. The slope of each odor was fit-
ted independently. Before fitting, the mean values were first
min-max normalized by the minimum and maximum values
of individual neurons.

OSN simulation. The 200 OSN curves are simulated using a
logistic function:

ri =Ri

(
1−si

1 + exp(−ai(x− bi))
+si

)
. (3)

The parameterRi (one per neuron) is sampled from a gamma
distribution Γ(α,β), where α = 1.15, β = 1.92, parameters
fitted from experimental data in mice glomeruli (). The a pa-
rameter controls how fast the curve reaches saturation value
R (higher values of a indicate faster saturation but slower
activity initiation). The b parameter controls the x value
where the OSN activity reaches half-maximum of rmax. The
s parameter is a small non-zero parameter representing the
amount of spontaneous activity in the absence of stimuli.
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Concentration-response curves. When simulating
concentration-response curves, the parameter x in Eqn. 3 is
set to discrete concentration levels at (arbitrary) values of 30,
40, 50 and 60.

Non-crossover responses. The values of parameters a, b,
and s are fixed at a= 0.1, b= 50, s= 0.

Crossover responses. The values of a, b and s are sampled
from uniform distributions between [0.05,0.4], [30,80] and
[0,0.05] respectively.

Temporal response curves. When simulating temporal-
response curves, the parameter x in Eqn. Eq. (3) indicates the
time ranging from 0 to 120 ms. The parameters for different
concentration levels are:

Concentration level rmax a b s
Low 5 0.3 Uniform[30,80] 0
Medium 10 0.2 Uniform[30,80] 0
High 15 0.1 Uniform[30,80] 0

Logistic regression on concentration decoding. Multi-class
logistic regressions were performed using the LogisticRe-
gression function in the sklearn library of Python, with
liblinear kernel and `2 regularization, and under the
“one vs. rest” scheme.
For mice data, concentrations were first classified within each
odor independently, and the reported accuracy was averaged
over the five odors. There are four trials per given odor-
concentration pair for glomeruli data, and five trials for mitral
cell data; the regression model was trained on three/four tri-
als randomly selected and tested on the left-out trial. This
process was repeated ten times (with a different, random trial
left out per concentration level each time), and the final ac-
curacy for this odor is the average over the ten repeats. The
concentrations in locust and fruit fly data were classified in
the same way as mice data.
For zebrafish data, since there is only one measurement for
each odor-concentration pair, trials for each concentration
level were simulated by adding noise to the experimental
data. In total 10 repeats were simulated for each concen-
tration level. Noise was generated from a Gaussian distribu-
tion with mean equal to 0 and standard deviation equal to the
mean response of all neurons in the given concentration.

Estimating distance based on odor concentration. The esti-
mates of concentration fall-off as a function of distance from
the odor source were based on experimental measurements
(Albeanu lab, unpublished data). The mean odor intensity
was measured using a photoionization detector (Aurora sci-
entific) while laterally displacing the odor source from the
PID in increments of 5 mm, over a total range of 50 mm,
across 3 different odors. The observed relationship was well
fit by the equation:

C(x) = exp(−0.1729x), (4)

where C(x) is the normalized concentration at distance x,
and x is the distance (in mm) between the location of mea-
surement and the source of odor.
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