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SUMMARY

Neurons transmit information to distant brain regions
via long-range axonal projections. In the mouse,
area-to-area connections have only been system-
atically mapped using bulk labeling techniques,
which obscure the diverse projections of inter-
mingled single neurons. Here we describe MAPseq
(Multiplexed Analysis of Projections by Sequencing),
a technique that can map the projections of thou-
sands or even millions of single neurons by labeling
large sets of neurons with random RNA sequences
(‘‘barcodes’’). Axons are filled with barcode mRNA,
each putative projection area is dissected, and
the barcode mRNA is extracted and sequenced.
Applying MAPseq to the locus coeruleus (LC), we
find that individual LC neurons have preferred
cortical targets. By recasting neuroanatomy, which
is traditionally viewed as a problem of microscopy,
as a problem of sequencing, MAPseq harnesses
advances in sequencing technology to permit high-
throughput interrogation of brain circuits.

INTRODUCTION

Neurons transmit information to distant brain regions via

long-range axonal projections. In some cases, functionally

distinct populations of neurons are intermingled within a

small region. For example, nearby hypothalamic nuclei regu-

late basic drives including appetite, aggression, and sexual

attraction (Kennedy et al., 2014; Sternson, 2013), and neu-

rons from these nuclei project to distinct targets. In visual

cortical area V1, responses to visual stimuli are matched to

the properties of the higher visual areas to which the neurons

project (Glickfeld et al., 2013; Movshon and Newsome, 1996).

Findings such as these suggest that the information trans-

mitted by individual neurons may be tailored to their targets.

Such selective routing of information requires an anatomical

substrate, but there is currently no high-throughput method

for determining the diverse projection patterns of individual

neurons.
At present, there is a steep tradeoff between throughput

and resolution in anatomical approaches to mapping long-

range connections. In conventional anterograde brain mapping

studies, a fluorescent or enzymatic label is used to enable visu-

alization of cell bodies and distal projections by lightmicroscopy.

Bulk techniques query the projections of many neurons labeled

at a single injection site and thus sample the aggregate architec-

ture of an entire neuronal population. There have been several

large-scale efforts, including the Allen Brain Projection Atlas

(Oh et al., 2014) and the iConnectome (Zingg et al., 2014), to sys-

tematically map mesoscopic connectivity. Although fast, such

bulk methods obscure the diversity of the many projection

neurons labeled in any one experiment. Consider, for example,

a single source area that projects to three downstream areas

(Figure 1A). This projection pattern enables neurons in the source

area to send information to the three downstream areas. How-

ever, identical bulk projection patterns could arise in multiple

ways: (1) from a one-to-one architecture, in which each neuron

targets only a single downstream area (left); (2) from an all-to-

all architecture, in which each neuron targets every downstream

area (middle); or (3) from a host of more complicated architec-

tures (right). With conventional bulk labeling, these three projec-

tion patterns, which have different functional implications, are

indistinguishable without further experimentation.

Several alternative methods have been developed to comple-

ment conventional anterograde bulk labeling approaches. For

example, genetically defined subpopulations of neurons within

an area can be targeted by expressing a marker such as Cre re-

combinase (Gong et al., 2007; Harris et al., 2014; Huang, 2014).

Similarly, subpopulations can be defined using retrograde (Lima

et al., 2009; Oyibo et al., 2014;Wickersham et al., 2007a) or trans-

synaptic viruses (DeFalco et al., 2001; Wickersham et al., 2007b).

However, because such approaches rely on positing defined sub-

populations, they cannot easily be used to screen for the myriad

possible complex projection patterns neurons might exhibit.

The most general and unbiased approach to distinguishing

among the architectures in Figure 1A relies on single-neuron

anterograde tracing. Current methods for achieving single-

neuron resolution require individually labeling one or, at most,

a few cells per brain (Economo et al., 2016), a labor-intensive

approach that affords high resolution at the cost of low

throughput. Although single-neuron tracing can be multiplexed

by labeling individual neuronswith different colored fluorophores

(Ghosh et al., 2011; Livet et al., 2007), in practice the extent of
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Figure 1. Barcoding Allows High-Throughput Single-Neuron Tracing

(A) Identical bulk mapping results can arise from different underlying projection patterns.

(B) Single-neuron resolution can be achieved by randomly labeling neurons with barcodes and reading out barcodes in target areas.

(C) The expected fraction of uniquely labeled cells is given by F = (1-1/N)(k-1), where N is the number of barcodes and k is the number of infected cells, assuming a

uniform distribution of barcodes. The number of neurons for variousmouse brain areas is indicated according to references (Herculano-Houzel et al., 2006; Schüz

and Palm, 1989) (A1, primary auditory cortex; Ctx, neocortex).

(D) In MAPseq, neurons are infected at lowMOI with a barcoded virus library. Barcode mRNA is expressed, trafficked, and can be extracted from distal sites as a

measure of single-neuron projections.
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multiplexing is limited by the number of colors—at most 5–10—

that can be resolved by microscopy.

Here we describe MAPseq (Multiplexed Analysis of Projec-

tions by Sequencing), a novel approach in which the speed

and parallelization of high-throughput sequencing are exploited

for brain mapping (Zador et al., 2012). MAPseq achieves multi-

plexing by using short, random RNA barcodes to uniquely label

individual neurons (Mayer et al., 2015; Walsh and Cepko, 1992;

Zador et al., 2012) (Figure 1B). The key advantage of using barc-

odes is that their diversity grows exponentially with the length of

the sequence, overcoming the limited diversity of the resolvable

color space. The pool of unique barcode identifiers is effectively

infinite; even a 30-nt sequence has a potential diversity of

430z1018 barcodes, far surpassing the �108 neurons in the

mouse brain (Herculano-Houzel et al., 2006). Because high-

throughput sequencing can quickly and inexpensively distin-

guish these barcodes, with MAPseq we can potentially read

out the projections of thousands or even millions of individual

neurons in parallel within a single brain (Figure 1C).

In MAPseq, we uniquely label neurons in a source region by

injecting a viral library encoding a diverse collection of barcode
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sequences. The barcode mRNA is expressed at high levels

and transported into the axon terminals at distal target projection

regions (Figure 1D). To read out single-neuron projection pat-

terns, we then extract and sequence barcode mRNA from the in-

jection site, as well as from each target region of interest. Spatial

resolution of MAPseq is limited mainly by the precision of target

dissection. Although MAPseq, like GFP tracing, does not distin-

guish fibers of passage, we minimize their contribution by avoid-

ing large fiber bundles during the dissection of target areas.

Using this procedure, the brain-wide map of projections from a

given area can be determined in less than a week. By reformulat-

ing projection mapping as a problem of sequencing, MAPseq

harnesses advances in high-throughput sequencing to permit

efficient single-neuron circuit tracing.

RESULTS

As a proof of principle, we appliedMAPseq to the locus coeruleus

(LC), a small nucleus in the brainstem that is the sole source of

noradrenaline to the neocortex (Foote and Morrison, 1987). Early

bulk tracing experiments revealed that the LC projects broadly
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throughout the ipsilateral hemisphere, leading to the view that the

LCbroadcasts a generalized signal thatmodulates overall behav-

ioral state (Foote andMorrison, 1987; Foote et al., 1983; Loughlin

et al., 1982;Waterhouse et al., 1983). This view has recently been

supported by more sophisticated retrograde bulk tracing experi-

ments, which reinforce the idea that LC neurons project largely

indiscriminately throughout the entire ipsilateral hemisphere

(Schwarz et al., 2015). However, other reports have challenged

this model. Using double retrograde labeling methods, these ex-

periments uncovered separate populations of LCneuronsprojec-

ting to different areas of cortex (Chandler et al., 2014; Chandler

and Waterhouse, 2012), raising the possibility that the LC exerts

differential control over different cortical areas. To address this

controversy, we applied MAPseq to LC to obtain a large number

of projection patterns at single-neuron resolution.

In what follows, we first show that long-range projections of

neurons can be efficiently and reliably determined using barcode

mRNAs, the abundance of which we interpret, like GFP intensity,

as a quantitative measure of projection strength. Next, we estab-

lish the theoretical and practical foundations of randomly label-

ing large numbers of neurons with a viral barcode library, critical

for ensuring single-cell resolution for MAPseq. We then apply

MAPseq to the LC and find that individual neurons have a variety

of idiosyncratic projection patterns. Some neurons project

almost exclusively to a single preferred target in the cortex or

olfactory bulb, whereas others project more broadly. Our find-

ings are consistent with, and reconcile, previous seemingly

contradictory results about LC projections. Finally, we show

that MAPseq can be multiplexed to two and potentially many in-

jections in the same animal, which will allow the projection pat-

terns from many brain areas to be determined efficiently and in

the same brain without the need for registration across animals.

Using RNA to Trace Neurons
Conventional neuroanatomical tracing methods rely on filling

neurons with dyes or proteins so that neural processes can be

resolved by microscopy. An implicit assumption of these tech-

niques—albeit one that has rarely been rigorously tested—is

that the tracer fills the neuron abundantly and uniformly so

that the strength of the signal corresponds to the quantity of

labeled neural process, independent of distance from the

soma. For barcode mRNAs to act as a comparable label in

MAPseq, we sought to maximize the abundance and uniformity

of barcode mRNA in distal processes. We used two strategies to

achieve this goal.

First, we expressed a modified presynaptic protein that was

designed to specifically bind to and transport barcode mRNA

into axon terminals. We engineered this protein, which we

denote MAPP-nl, as part of a larger project aiming to read out

synaptic connectivity using mRNA. To generate MAPP-nl, we

began with pre-mGRASP, a protein engineered to localize at

the presynaptic terminal due to fusion with trafficking signals

from the endogenous presynaptic protein NRXN1b (Kim et al.,

2011). We then inserted four copies of the nl RNA binding

domain (Daigle and Ellenberg, 2007) into the cytoplasmic

domain of the protein. Derived from the l phage lN protein, the

nl domain is a 22-aa peptide that strongly and specifically binds

to a 15-nt RNA hairpin, termed boxB. We added four copies of
the boxB hairpin to the barcode mRNA, ensuring coupling of

MAPP-nl to the barcode mRNA and thus transport of barcode

mRNA into axon terminals (Daigle and Ellenberg, 2007). Second,

we delivered the barcode sequence using recombinant Sindbis

virus, a virus that can rapidly achieve very high expression levels

(Ehrengruber, 2002). We used a novel Sindbis packaging system

that, unlike previous systems, is both neurotropic and propaga-

tion incompetent (Kebschull et al., 2016) (Figures S1A–S1G;

Supplemental Information, note 1, available online). All compo-

nents necessary for MAPseq are expressed from a dual pro-

moter virus that generates two subgenomic RNAs (Figure 2A).

The first encodes the MAPP-nl protein. The second RNA en-

codes a random 30-nt barcode, as well as the boxB sequence,

downstream of a GFP marker (Figures S1H and S1I). We

reasoned that combining these two strategies would maximize

our ability to reliably detect barcode mRNA in distal processes.

We injected barcoded virus into right LC (Figures S1J–S1L)

and examined barcode localization by in situ RNA hybridization

44 hr after injection. We observed robust barcode mRNA locali-

zation in the soma and neuronal processes, in a pattern similar to

that of co-expressed GFP (Figure 2B). This suggested that bar-

code mRNA could effectively fill local neuronal processes.

To determine whether the barcode mRNA fills distal neuronal

processes uniformly, we exploited the particular anatomy of

LC projection neurons. LC neurons that project to cortex send

their processes all the way to the rostral end of the brain, before

changing direction and moving caudally to innervate cortical

areas (Figure 2C). Axons that project to visual cortex are there-

fore approximately twice as long as those that project to frontal

cortices. From bulk tracing studies, it is known that LC innerva-

tion is homogeneous along the rostro-caudal axis (Schwarz

et al., 2015; Waterhouse et al., 1983). Thus, if barcode mRNA

were not efficiently transported to distal processes, we would

expect to find more barcode mRNA in rostral regions of cortex.

To assess this, we injected barcoded virus into LC, cut 300 mm

coronal slices of the entire cortex (Figure 2D), and quantified

the amount of barcode mRNA from each ipsilateral and

contralateral slice. Consistent with previous results using GFP

and other tracing methods (Schwarz et al., 2015; Waterhouse

et al., 1983), we found approximately uniform projections

throughout the ipsilateral cortex (p = 0.972 F-statistic versus

constant model; Figure 2E); in particular, we found no evidence

that distal processes were more weakly labeled than proximal

processes. Also consistent with previous results, we observed

much weaker (30.6-fold less; p = 4 3 10�31, paired Student’s

t test) projections to the contralateral cortex (Figure 2F). These

results suggest that barcode mRNA fills distal and proximal pro-

cesses with about equal efficacy so that the barcode mRNA can

be interpreted in the same way as the fluorophores and dyes

used in conventional tracing studies.

Unique Labeling of Neurons with Barcodes
In conventional single-neuron tracing, themain challenge tomul-

tiplexing is the low diversity of labels (fluorophores or enzymes)

available to disambiguate individual neurons. To overcome this

challenge, MAPseq labels neurons with short, random RNA

barcodes delivered by infection with a diverse viral library.

Ideally, each labeled neuron should have exactly one unique
Neuron 91, 1–13, September 7, 2016 3



Figure 2. Barcoded Sindbis Virus Can Be

Used for Projection Mapping

(A) A dual promoter Sindbis virus was used to

deliver barcodes to neurons. The virus encoded

GFP, barcodes, and MAPP-nl.

(B) Barcode mRNA labeling of LC neurons is

comparable to GFP labeling of these neurons in an

adjacent 6 mm slice both at the injection site (top)

and in the axon tract (bottom). Scale bar, 100 mm.

Representative data from three animals.

(C) Axons from LC project rostrally from the cell

body, before changing direction and innervating

cortex. LC axons that project to frontal cortices

have thus traveled only about half as long as axons

innervating visual cortex.

(D) We injected right LC with MAPseq virus and

dissected cortex along the anterior-posterior axis

as shown.

(E) Bulk projection strength of LC to ipsilateral

cortex as measured by barcode mRNA is inde-

pendent of the anterior-posterior position of the

cortical slice, suggesting a uniform RNA fill of LC

axons. N = 4. The shaded area indicates the 95%

confidence interval of the fit.

(F) qPCR for barcode mRNA shows approximately

303 stronger LC projections to ipsi- than to

contralateral cortex. N = 2 animals and 21 cortical

slices per animal. BC, barcodes. The y axis dis-

plays DDct values, which are equivalent to the

log2(foldchange of barcode mRNA per sample)

normalized to b-actin levels in each sample and to

the amount of barcode mRNA in the injection site

of each animal (Livak and Schmittgen, 2001). In-

dividual data points are plotted. The mean is indi-

cated by a horizontal bar, SD error bars by a light

gray area, and 95% confidence interval by a dark

gray area.
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Figure 3. Random Labeling of Neurons with

a Barcoded Virus Library Can Achieve

Unique Labeling of Many Neurons

(A) When single neurons are labeled with several

barcodes, MAPseq will overestimate of the num-

ber of neurons identified, but will not distort

the projection patterns recorded for individual

neurons.

(B) Single-cell isolation of GFP-positive, barcoded

neurons, followed by sequencing of their barcode

complement, reveals a low chance of double

infection. We interpret neurons for which no

barcodes were recovered as technical failures of

cell isolation, rather than biological phenomena.

N = 3 animals. Mean and individual data points are

plotted.

(C) When several neurons share the same bar-

code, MAPseq misinterprets this as a single

neuron whose projection pattern is given by the

union of the projection patterns of the two infected

neurons.

(D) High-diversity Sindbis virus libraries are pro-

duced by shotgun cloning random oligonu-

cleotneuron_13280_gr1_4c.tif - ides into a

plasmid followed by virus production.

(E) The virus library used in this work has a diversity

of �106 different barcodes (BC), but the distribu-

tion was non-uniform. The sequence rank is a

number that ranges from 1 to the total number

of barcodes, where 1 corresponds to the most

abundant sequence, 2 to the second most abun-

dant, and so on.

(F) Based on the empirically observed non-uniform

barcode distribution, we determined that the virus

library used is sufficiently diverse to uniquely label

all of LC with low error rate.
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barcode. Here we consider the factors that could lead to devia-

tions from this ideal scenario: (1) more than one barcode per

neuron (multiple labeling) and (2) more than one neuron per bar-

code (non-unique or degenerate labeling). As discussed below,

deviations resulting from multiple labeling are much less of a

concern than those resulting from degenerate labeling.

A neuron may express more than one barcode if it is infected

by more than one viral particle. Such multiple labeling will lead to

an overestimate of the number of neurons identified, but will not

distort the projection patterns recorded for individual neurons

(Figure 3A). Furthermore, even estimates of the relative abun-

dances of different neuronal classes will, on average, be accu-

rate. Assume, for example, that two neurons A and B are each

labeled with ten different barcodes. In this scenario, MAPseq

will discover ten instances of neuron A and ten of B, but even

though the absolute number of neurons is incorrect, the fact

that neurons A and B have distinct projection patterns, and

that these patterns occur in a 1:1 ratio, is accurately inferred.

Thus,multiple labeling will not, on average, lead tomischaracter-

ization of neuronal classes or of their relative frequency in the

population.
Nevertheless, to simplify the interpre-

tation of MAPseq results, we sought to

minimize the MOI by titrating the concen-
tration and volume of virus injected. To estimate the MOI, we

isolated a total of 45 individual neurons from three animals in-

jected with MAPseq virus into the right LC and sequenced the

barcodes within each neuron. On average, infected LC neurons

contained 1.2 ± 0.1 barcodes each, implying MOI of 0.43 (Fig-

ure 3B). Only 21% ± 11% of neurons contained more than

one barcode, with most of these neurons carrying two barcode

sequences and only 1.7% ± 2.9% of neurons containing three

barcode sequences.

The second deviation from the ideal scenario is non-unique la-

beling. If two neurons share the same barcode, then MAPseq

misinterprets this as a single neuron whose projection pattern

is given by the union of the projection patterns of the two infected

neurons (Figure 3C). The probability that two neurons are in-

fected by the same barcode depends on the number of infected

cells relative to the number of available barcodes. Trivially, if the

number of infected cells is larger than the number of available

barcodes, unique labeling of all neurons cannot be achieved.

Conversely, if the number of available barcodes is much higher

than the number of infected cells, every neuron will be labeled

with a different barcode purely by chance.
Neuron 91, 1–13, September 7, 2016 5
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To determine whether our barcode diversity was sufficient to

ensure unique labeling, we first quantified the number of neurons

in the LC. We counted 1,985 ± 132 (N = 6 animals) neurons ex-

pressing tyrosine hydroxylase, a noradrenergic marker. The

size of this neuronal population is approximately 15 orders of

magnitude smaller than the theoretical diversity (430z1018) of a

library of 30-nt barcodes, so in theory, unique labeling would

be virtually certain. In practice, however, the actual diversity of

a virus library is limited by bottlenecks in plasmid and virus gen-

eration (Figure 3D), so further analysis was required to determine

whether the viral library was sufficiently diverse.

We therefore computed how the fraction of uniquely labeled

neurons scaled with the diversity of the viral library. This problem

is formally equivalent to a generalization of the classic ‘‘birthday

problem,’’ which concerns the probability that in a group of

k people (neurons), some pair will have the same birthday (bar-

code). Assuming that all barcodes are equally abundant in the

library, we can express the expected fraction F of uniquely

labeled neurons as

F=

�
1� 1

N

�k�1

;

where k is the number of infected neurons (assuming one bar-

code per cell), and N is the barcode diversity (see Supplemental

Information, note 2). Thus, if k = 1,000 LC neurons were infected

with a library of diversity of N = 106, on average 99.9% of all neu-

rons would be labeled uniquely. This expression holds only for

a library of equally abundant barcodes; if some barcodes are

overrepresented, the fraction F of uniquely labeled neurons de-

creases (in the same way that if birthdays tend to fall on a partic-

ular day, the probability of finding a shared birthday in a group

increases; Munford, 1977). However, analysis of the actual viral

barcode library determined by sequencing (Figure 3E) revealed

that in practice, these deviations from uniformity had only a

minor effect (Figure S2A). Thus, under our conditions, the vast

majority (>99%) of neurons will be uniquely labeled, even taking

into account the uneven barcode distribution in the viral library

(Figure 3F; Supplemental Information, note 2).

We also used a second, more empirical approach to estimate

the extent of degenerate labeling. Since we used the same viral

library to infect neurons in different animals, barcode sequences

found in more than one animal represent degeneracy. We there-

fore looked for overlap in the recovered barcodes from four inde-

pendent injections of the same virus library. Out of the 992

unique barcodes that we recovered from traced neurons, only

three barcodes were present in more than one animal, and no

barcode was present in more than two animals. This empirically

measured rate of degenerate labeling is in close agreement with

our expectations based on the theoretical considerations above.

Moreover, two of the three repeated barcodes were among the

most abundant barcodes in the virus library (Figure S2B), and

would thus be expected a priori to have the highest probability

of double labeling. This analysis provides an independent confir-

mation that the error rate due to non-unique labeling by the bar-

code library is very low in our experiments.

In addition to non-unique barcode labeling, MAPseq is subject

to other errors that differ from those associated with conven-

tional tracing approaches.We used several approaches to quan-
6 Neuron 91, 1–13, September 7, 2016
tify these errors and find that the overall MAPseq error rate was

low both for false positives (1.4% ± 0.8%, mean ± SE) and for

false negatives (8.6% ± 6%, mean ± SE) (see Supplemental

Information, note 3). MAPseq thus provides a reliable measure

of axon projections.

Sequencing of Barcode mRNAs Reveals Diverse Single-
Neuron Projection Patterns
The goal of MAPseq is to quantify the projection patterns of large

populations of neurons in parallel. We therefore developed a

method to determine the amount of each barcode in each

dissected target (Figure 4A). Forty-four hours after injection of

barcoded virus into right LC, we performed reverse transcription

on barcode mRNA extracted from dissected target regions. To

overcome distortions introduced during amplification (Kebschull

and Zador, 2015), and to allow a precise count of barcode cDNA

molecules, we designed reverse transcription primers to tag

each individual barcode mRNA molecule with a random 12-nt

unique molecular identifier (UMI). We also added a 6-nt slice-

specific identifier (SSI) to allow multiplexing of samples within a

single high-throughput sequencing flow cell. We then amplified,

pooled, and sequenced these SSI-UMI-barcode cDNAs (Fig-

ure S3). We developed a conservative computational pipeline

to minimize noise due to RNA contamination and to correct for

sequencing and other errors (Supplemental Information, note

4). Finally, we converted barcode abundance in the target areas

to a matrix of single-neuron projection patterns.

We used MAPseq to determine the projection patterns of a to-

tal of 995 barcodes labeled in four animals (249 ± 103 barcodes

per animal), roughly corresponding to an equal number of LC

neurons. For each animal, we analyzed the barcode mRNAs ex-

tracted and amplified from the olfactory bulb and from22 coronal

slices (300 mm) taken from the cortex ipsilateral to the LC injec-

tion (Figures 4B and 4C). Although, like conventional GFP

tracing, MAPseq does not distinguish between synaptic connec-

tions and fibers of passage, we minimized the contribution of

large fiber tracts in the white matter during dissection, so most

of themRNAbarcode signal was likely generated from axons ter-

minating in the regions of interest. Dissection of coronal slices al-

lowed us to probe the organization of projections along the

rostral-caudal axis, but we were insensitive to any additional

structure along the medio-lateral axis. Because individual bar-

code cDNA molecules are tagged with a UMI before amplifica-

tion, we obtained a precise quantification (subject to Poisson

counting statistics; see Supplemental Information, note 5) of

the amount of each barcode sequence in each dissected target.

In this way, we could infer the projection strength—the density of

axon per tissue volume—of each neuron to each coronal target

area. For example, we recovered 223 copies of BC28 in slice

5, but none in slice 20, indicating that the projection strength

to slice 5 is at least a factor of 200 higher than our detection floor

(Figure 4D).

Inspection of the projection patterns revealed that in contrast

to the simplest prediction from conventional bulk tracing, single

neurons did not project uniformly throughout the ipsilateral hemi-

sphere. Instead, neurons projected in diverse and idiosyncratic

ways to specific targets, innervating some areas hundreds

of times more strongly than others (Figure 4D). Some neurons



Figure 4. MAPseq Reveals Large Diversity of Projections from LC

(A) Barcode mRNAs from target areas are sequenced as described (SSI, slice specific identifier; UMI, unique molecular identifier).

(B–D) Barcodes from ipsilateral olfactory bulb and cortex (B and C) show projection patterns (D) with single or multiple peaks in cortex and/or olfactory bulb. The

shaded area indicates Poisson error bars given by the square root of barcode (BC) counts per slice.
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(e.g., BC28) showed specific projections to only a small part of

cortex, whereas others (e.g., BC79) projected more broadly, or

projected to multiple areas (e.g., BC51 or BC235). Projections

to the olfactory bulb appeared independent of projections to cor-

tex, with some neurons projecting exclusively to the olfactory

bulb (e.g., BC302), some projecting exclusively to cortex (e.g.,

BC79), and others projecting to both (e.g., BC108).

The small fraction of multiply infected neurons revealed by

single-cell sequencing (21% ± 11%; Figure 3B) provided a

convenient internal measure of the reliability of MAPseq.

Within each animal, we found pairs of very similar projection

patterns, as would be expected if they arose from double la-

beling of the same neuron (Figures 5A and S4A). By comparing

the similarity of projection patterns within and across animals,

we estimated the total number of barcode pairs arising from

doubly labeled neurons (18.6% ± 2%; Figures 5B and S4B).

The fact that this estimate is in such close agreement with

the independent estimate of the number of doubly labeled

neurons from single-cell sequencing supports the view that
MAPseq provides a robust measure of single-neuron projec-

tion profiles.

To assess the structure of the LC projection to cortex and

olfactory bulb, we sorted all traced neurons by their maximum

projection (Figure 6A). The maximum projections of individual

LC neurons tile the entire cortex. To compare across the popu-

lation, we normalized the total barcode count of the projection

of each neuron to one, although interestingly there was no

correlation between expression level in the LC and the maximal

projection strength to cortex, as would have been expected if

differences across neurons were dominated by expression level

(R =�0.06; p = 0.09; Figure S5A). Only in the aggregate do these

projections re-create the apparently homogeneous LC innerva-

tion of cortex previously described by bulk methods (Figure 2E).

Consistent with previous results (Shipley et al., 1985), a consid-

erable fraction (23% ± 4.7%) of all mapped neurons projected to

the olfactory bulb.

We then asked if we could find structure, or even stereotypic

projection cell types, in the single-cell dataset. We investigated
Neuron 91, 1–13, September 7, 2016 7



Figure 5. MAPseq Provides a Robust Readout of Single-Neuron Projection Patterns

(A) Two representative pairs of barcodes with projection patterns more similar than expected by chance for two distinct neurons, likely the result of double

infection of a single neuron. The close agreement between the two barcode profiles indicates thatMAPseq provides a reliablemeasure of projection patterns. The

closest match across animals is indicated in gray for comparison.

(B) Cumulative distribution of distances between the best barcode pairs within one animal and across animals. The shift in the within-animal distribution reflects

the higher fraction of closely matched projection profiles, consistent with double infection. Representative data from one animal.
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the cortex-wide projection patterns of LC by reducing the dimen-

sionality of the projection dataset using Euclidean distance-

based t-SNE (t-distributed stochastic neighbor embedding)

(Van der Maaten and Hinton, 2008). Neurons with maximum pro-

jections close to each other in physical space along the rostro-

caudal axis also fall closely together in t-SNE space (Figure S5B),

indicating that the location of the maximum projection target at

least partially describes the individual neuron projection pat-

terns. However, hierarchical clustering of the projection profiles

of neurons that project to cortex did not uncover distinct cell

classes (Figure S5C). Although we cannot rule out the possibility

that there is further structure in the projection patterns that would

be revealed by higher-resolution dissection, our data suggest

the intriguing possibility that LC projections are equipotential

for projecting to all targets, and the choice is arbitrary for each

neuron. How the circuit might exploit such random connectivity

raises interesting computational challenges.

Although many LC axons projected very strongly to a narrow

target, these axons often sent minor collaterals to a much

broader area, like a plant with a single main stalk andmanyminor

growths. The average number of projection peaks per LC neuron

was 1.6 ± 0.8 (Figure S5D), and the fall-off to half the maximum

projection strength of individual neurons occurred on average in

<300 mm (Figure 6B). Nonetheless, every cortically projecting

neuron innervated on average 65% ± 23% of cortex at a detect-

able level (see cumulative distribution of projection widths in

Figure 6C). Importantly, this broad, weak innervation of cortex

cannot be explained simply by contamination of our dataset by

fibers of passage. LC axons innervate cortex starting in the

rostral end and moving caudally (Figure 3C). We would therefore

expect signals from accidentally dissected fibers of passage to

only precede strong projection targets of individual neurons

along the rostro-caudal axis. However, we find that strong pro-

jection targets are both preceded and followed by low-level pro-

jections (e.g., see Figure 4D; BC79 and BC51). We therefore

conclude that the observed weaker signals are not the result of

fibers of passage but represent real, but weak, projections.

The fact that many neurons had a strong preferred target in

cortex or olfactory bulb, but also projected weakly to a much
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broader area, provides a way to reconcile apparently conflicting

results about the specificity of LC projections. Recent experi-

ments in which retrograde viral labeling was combined with

anterograde tracing of axons concluded that as a population,

LC neurons project largely indiscriminately throughout cortex

and the rest of the brain examined (Schwarz et al., 2015). How-

ever, using this approach, a neuron labeled retrogradely from a

weak projection is indistinguishable from one labeled from a

strong projection, so at the level of the population (i.e., after sum-

ming the projection patterns of strongly and weakly projecting

neurons), it may appear that projections are nonspecific. Thus,

although the results of this study may appear to contradict those

obtained by MAPseq at single-neuron resolution, simulations of

retrograde labeling in combination with anterograde bulk tracing

based on our MAPseq dataset demonstrate that there is no

contradiction (Figures S5E and S5F) at the bulk level.

MAPseq Scales to Several Injection Sites
MAPseq can readily be extended to determine the projections of

two or more regions in a single animal. As a proof of principle, we

injected the same library of MAPseq virus bilaterally into left and

right LC, and dissected coronal slices of left and right cortex and

the olfactory bulbs, as well as both injection sites (Figure 7A).

Each barcode was expressed predominantly in either the left

or right LC (Figure 7B); barcode expression at the site contralat-

eral to the injection, due to contralaterally projecting fibers and/

or contamination, is much lower. Thus, each barcode can be reli-

ably assigned to the appropriate injection site. As expected, par-

allel injections recapitulated the projection pattern observed with

single injections (Figure 7C). Multiplexing MAPseq to dozens of

injections per animal may be feasible, reducing the labor and

cost of brain-wide projection mapping efforts, and eliminating

the need to map data from multiple animals to an average refer-

ence brain (Oh et al., 2014; Zingg et al., 2014).

DISCUSSION

We have described MAPseq, the first application of sequencing

to neuroanatomical tracing. MAPseq is a simple, rapid, and



Figure 6. LC Neurons Tile Cortex with Their

Maximum Projections, but Innervate Large

Areas of Cortex at a Low Level

(A) A heatmap of all 995 projection patterns from

four animals shows a strong diagonal component

after sorting by maximum projection site. Barcode

abundances are normalized to sum to one across

target areas and are color coded as indicated.

(B) Average cortical drop-off rate from maximum

for all barcodes shows a rapid drop-off and a

structure that is different from the drop-off after

randomly shuffling slices for all neurons. N = 4. The

shaded area around the curve indicates the SD

across animals.

(C) Cumulative distribution of cortical projection

widths indicates a broad, low-intensity innervation

of cortex by individual LC neurons. BC, barcode.
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inexpensive approach to determining the projection patterns of

myriad single neurons at one or more injection sites in a single

animal. As a proof of principle, we applied MAPseq to the LC.

In contrast to previous bulk labeling studies that reported diffuse

and non-specific projections from the LC, this single-neuron

resolution analysis reveals that individual LC neurons have idio-

syncratic projection patterns with preferred cortical targets, and

reconciles a controversy about the specificity of LC projection

patterns. MAPseq, which complements rather than replaces

conventional approaches, can readily be applied to other brain

regions and organisms, and with further development may be

combined with information about gene expression and neural

activity.

The cost of sequencing the human genome was several

billion dollars in 2003, but today it is less than one thousand

dollars—a decrease of over six orders of magnitude in just

over a dozen years (Hayden, 2014; Sheridan, 2014). This pre-

cipitous drop in sequencing costs continues unabated, at a

rate faster even than Moore’s law (the rate at which computers

improve). At the same time, DNA sequencing has evolved from

a specialized tool for determining the sequences of genomes

into a versatile technology for determining gene expression

levels, discovering new species, tracking cell fates, and under-

standing cancer growth, among many other applications (Reu-

ter et al., 2015). With advances of technology and novel

assays, DNA sequencing has revolutionized disparate areas

of biology. By harnessing sequencing for neuroanatomical

tracing, MAPseq may accelerate our understanding of neural

circuits.
High-Throughput Sequencing and
Neuroanatomy
In the present work, we applied the

simplest form of MAPseq to LC. We ex-

pressed the virus ubiquitously, without

any specific targeting to a cell type

using, e.g., Cre recombinase, and used

gross dissection to probe projections at

a spatial resolution of 300 mm coronal

sections. Because the LC projects

throughout the entire cortex, this rela-
tively low spatial resolution was well suited to address previously

unresolved questions about LC anatomy. Gross dissection can

achieve somewhat higher spatial resolution (�1–2 mm 3

300 mm 3 cortical thickness; Figures S7A and S7B), sufficient

to distinguish among cortical areas in the mouse.

The application of MAPseq to the LC highlights both the ad-

vantages and the tradeoffs of MAPseq compared with traditional

methods. The main advantages of MAPseq are higher

throughput and that it is less labor intensive. The total amount

of time required to obtain the projection patterns from all

labeled LC neurons in a single mouse was under 1 week (dissec-

tion 2 days post-injection, followed by 1–2 days of tissue pro-

cessing to generate sequencing libraries, followed by 1–2 days

of sequencing), of which only a relatively small fraction is spent

on ‘‘hands-on’’ labor (as opposed to waiting). By comparison,

tracing a single neuron’s projections using traditional methods

requires a week or more of hands-on labor and even with auto-

mation requires days. Processing time with MAPseq does not

depend on the number of source (barcoded) neurons—as

many as 500,000 neurons can be labeled in a single subject

(unpublished data)—and MAPseq can be multiplexed to several

injection sites (Figure 7), so the throughput of MAPseq could

be five or more orders of magnitude higher than conventional

single-neuron tracing.

Therefore, MAPseq is, without any further technical develop-

ment, well positioned to address questions that depend on sin-

gle-neuron resolution at the source but do not require very

high spatial resolution at the target site. For example, MAPseq

could readily be used to systematically and efficiently compare
Neuron 91, 1–13, September 7, 2016 9



Figure 7. MAPseq Can Be Multiplexed to Several Injection Sites

(A) Following bilateral injection of barcoded Sindbis virus into LC, left and right olfactory bulb and cortex were dissected as before.

(B) Histogram of the fraction of barcode counts in the right versus left injection site across barcodes. Barcodes show strong abundance differences in the left and

right injection sites, allowing them to be assigned to one of the two sites.

(C) Bilateral injections produce the projection pattern expected from unilateral injections. Differences in the number of neurons traced from the left and right LC

arise from injection variability.
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the projection patterns of other neuromodulatory systems, such

as cholinergic or serotonergic, to the LC noradrenergic system

considered here. MAPseq could also be used to test whether

individual neurons in the primary auditory (or somatosensory)

cortex project to specific subsets of higher auditory (or

somatosensory) areas, analogous to the ‘‘ventral’’ and ‘‘dorsal’’

processing streams in the visual system. Furthermore, the Sind-

bis virus used to deliver barcodes has a very wide host range

(Xiong et al., 1989), from arthropods to mammals (including

primates). A particularly appealing application of MAPseq is

thus single-neuron tracing in nonhuman primates and in less

common model systems, where the cost per specimen renders

traditional single-neuron tracing approaches prohibitive, and

which benefit from the massive multiplexing achievable in

MAPseq. It is easy to envision myriad other applications of

MAPseq in its current form.

The main tradeoff of MAPseq compared with conventional

methods is spatial resolution. There are several potential paths

to achieving higher spatial resolution. One simple extension of

the protocol presented here is to use laser-capture microdissec-

tion, which can readily resolve MAPseq target areas to several

hundred microns (unpublished data), and which in principle

can achieve single-neuron resolution (Espina et al., 2006). Using

fluorescent in situ sequencing (FISSEQ) (Lee et al., 2014), even

higher resolution can be achieved (unpublished data); barcodes

can be localized with subcellular resolution, allowing for a kind

of ‘‘infinite color Brainbow’’ (Livet et al., 2007). At present, how-

ever, FISSEQ is not fully automated and has considerably lower

throughput than conventional sequencing.

What are the ultimate limits of MAPseq spatial resolution?

The factors limiting MAPseq can be understood by analogy

with those limiting optical microscopy. Just as spatial resolu-

tion—effective pixel size—in microscopy is limited by the optics

and detectors, so is the spatial resolution of MAPseq limited by

the spatial precision with which brain regions are sampled—

potentially subcellular with FISSEQ. The effective spatial resolu-

tion of MAPseq may also be limited by the amount of barcode

mRNA in each spatially defined region, analogous to the low-

light photon-counting limit in microscopy. The precise spatial
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scale at which the barcode mRNA ‘‘shot noise’’ limit is reached

in MAPseq is determined by the interplay of several factors,

including the diameter of the axonal projections, expression level

of the barcode, and the efficiency with which barcodes can be

recovered and amplified. Because mRNA shot noise did not

appear limiting in the present experiments, we did not invest sig-

nificant effort in optimizing these parameters. However, the fact

that barcodes can be detected even in fine LC axons suggests

that MAPseq may achieve relatively high spatial resolution.

MAPseq Extensions
Information about single-neuron projection patterns obtained

by MAPseq may be combined with information about other

dimensions of neuronal function. For example, single-neuron

projection patterns obtained by MAPseq could be associated

with information about gene expression. One approach exploits

transgenic mice that mark defined neuron classes with Cre re-

combinase. Although expression of barcodes delivered using

the RNA virus Sindbis cannot readily be controlled with Cre,

barcodes could be delivered using a DNA virus like AAV or a

retrovirus like lentivirus. More general approaches, such as sin-

gle-cell isolation (Figure S6), might associate several genes or

even a whole transcriptome with projection patterns. MAPseq

data could also be combined with recordings of neural activity

obtained by calcium imaging. Taken together, the combination

of connectivity, gene expression, and activity could provide a

richer picture of neuronal function than any of these alone (Mar-

blestone et al., 2014).

In its current form, MAPseq provides information about

neuronal projections, but not about synaptic connections. MAP-

seq can tell us, for example, that a given neuron in the thalamus

projects to both the amygdala and the cortex, but it cannot

resolve whether the cortical target is an excitatory or an inhibitory

neuron, or both. In this respect, it is similar to most standard

tracingmethods, such asGFP, which do not have synaptic spec-

ificity. However, the MAPP-nl protein we engineered includes

trafficking signals from the presynaptic protein NRXN1b, and

was originally designed to allow us to join pre- and postsynaptic

barcodes to detect synaptic connections. The joined barcode



Please cite this article in press as: Kebschull et al., High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA, Neuron
(2016), http://dx.doi.org/10.1016/j.neuron.2016.07.036
pairs can be sequenced using high-throughput methods and

provide an efficient and scalable method for determining the

full connectome of a neural circuit (Zador et al., 2012).

Uniformity versus Specificity of LC Projections
The LC sends projections to most ipsilateral brain areas, with the

notable exception of the striatum. However, how broadly individ-

ual neurons innervate those target areas is subject to debate.

Classical retrograde tracing studies suggested a topographic

organization of neocortical (Waterhouse et al., 1983) and brain-

wide (Loughlin et al., 1986) projection neurons in the LC. Consis-

tent with this, double retrograde labeling studies reported that

the LC projections to frontal and motor cortices (Chandler

et al., 2014; Chandler and Waterhouse, 2012) overlap minimally.

In contrast, other double retrograde studies found overlap be-

tween neurons projecting to separate structures along the

same processing stream (Simpson et al., 1997), or structures

as different as forebrain and cerebellum (Steindler, 1981). More

recent work using retrograde viral labeling combined with anter-

ograde tracing concluded that LC neurons project largely indis-

criminately throughout both cortex and the rest of the brain

(Schwarz et al., 2015).

Our single-cell resolution data reconcile these conflicting da-

tasets.We find that individual LC neurons have very specific pro-

jection targets in cortex and olfactory bulb, but are not limited to

a single target. We further observe that many LC neurons that

project to cortex innervate a large fraction of the cortex at least

weakly, in addition to having preferred projection targets. To

the extent that retrograde viral tracers may not distinguish be-

tween strong and weak projections, it may be this feature of sin-

gle-neuron projections, in combination with bulk tracing, that

leads Schwarz and colleagues (Schwarz et al., 2015) to conclude

that LC neurons largely indiscriminately project throughout

cortex and the bulb, and indeed we can replicate their results

by simulating retrograde tracing on our single-cell dataset.

The LC is the sole source of noradrenaline to the cortex.

Noradrenaline exerts a powerful influence on an animal’s

behavioral state. Noradrenaline levels control the overall level

of vigilance; they are lowest during sleep and are increased in

response to stimuli such as pain. Noradrenaline gates attention,

enhances formation of long-term memory, and is thought to

regulate the exploration-exploitation balance (Aston-Jones and

Cohen, 2005; Sara, 2009). Traditionally, it has been assumed

that the levels of neuromodulators such as noradrenaline repre-

sent a global signal, broadcast indiscriminately throughout the

cortex. However, the specificity of the single-neuron projections

patterns uncovered by MAPseq suggests that different brain re-

gions could be subject to differential control. Whether this poten-

tial for differential control is actually realized, and what functional

role it plays, remain to be determined.

Conclusion
Applying MAPseq to the LC, we discovered unexpected struc-

ture that could not have been resolved by previous methods

lacking single-neuron resolution. MAPseq also lays the founda-

tion for using sequencing to decipher local neuron-to-neuron

connectivity (Zador et al., 2012). Using DNA sequencing technol-

ogy, experimenters have gained unprecedented insight into the
heterogeneity of cell populations at the single-cell level (Navin

et al., 2011). By leveraging this sequencing technology, MAPseq

empowers neuroscience researchers to efficiently do the same

for populations of projection neurons examined at the single-

neuron level.

EXPERIMENTAL PROCEDURES

Animal procedures were approved by the Cold Spring Harbor Laboratory

Animal Care and Use Committee and carried out in accordance with NIH

standards.

MAPseq

Forty-four hours after injection of MAPseq virus into LC, we flash froze the

brain and cut it into 300 mm coronal sections using a cryostat. We dissected

the cortical regions on dry ice and extracted total RNA from each sample.

We then performed gene-specific reverse transcription for the barcode

mRNA, produced double-stranded cDNA, and PCR amplified it to produce

an Illumina sequencing library, which we sequenced at paired end 36 on an

Illumina NextSeq sequencing machine.

Data Analysis

We processed the sequencing data to determine the exact copy number of

each barcode sequence in each target area and in the injection site, and pro-

duced a barcode matrix where each row corresponds to one specific barcode

sequence, each column corresponds to a target area or the injection site, and

each entry is the copy number of that barcodemRNA in the respective area. All

data are expressed as mean ± SD unless otherwise stated.

For full details on the experimental procedures, please refer to the Supple-

mental Experimental Procedures.

ACCESSION NUMBERS

All high-throughput sequencing datasets are publicly available under SRA

accession codes SRA: SRS1204613 (library ZL067; virus library), SRS1204589

(libraries ZL068, ZL070, ZL071, ZL072; unilateral MAPseq datasets),

SRS1204614 (libraries ZL073, ZL074; bilateral MAPseq datasets), and

SRS1204626 (libraries ZL075 and ZL078; single-cell dataset).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

seven figures, five notes, and two data files and can be found with this article

online at http://dx.doi.org/10.1016/j.neuron.2016.07.036.
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Supplemental Notes 
Supplemental Note 1: Sindbis virus 
MAPseq requires that a propagation-incompetent virus be used for barcode delivery, i.e. after a neuron is infected 
with a particular barcode, the virus carrying this barcode should not propagate and spread to other cells. If the virus 
did propagate, barcodes would spread from cell to cell, and unique labeling of neurons by barcodes would break 
down as many neurons would now share the same barcode. 

Initial Sindbis virus libraries prepared with the conventional helper construct DH(26S)5’SIN induced GFP labeling 
not only at the injection site, but also occasionally at sites far away from the primary site of injection (Fig. S1 a-g). 
Such distal labeling has previously been interpreted as retrograde infection (Furuta et al., 2001), but we recently 
showed that it does not arise from retrograde spread, but is due instead to secondary infection (Kebschull et al., 
2016). Consistent with secondary spread, a subset of barcodes showed unexpectedly high expression levels in single 
target areas (“spikes”; Fig. S1e) when we performed MAPseq with barcoded virus packaged using the conventional 
helper construct. Indeed, we find that the barcode expression level in these spikes is comparable to the expression 
level of the same barcodes at the primary injection site (Fig. S1f). These observations strongly suggested that the 
observed spikes originate from ectopically infected cell bodies that are labeled with the same barcode as a neuron at 
the injection site. Given the high diversity of the viral library, such double labeling is exceedingly unlikely to occur 
by chance if labeling were due to retrograde infection, but would be expected if the virus used propagated inside the 
brain. 

We therefore designed a new helper construct, (DH-BB(5’SIN;TE12ORF); (Kebschull et al., 2016)), to eliminate 
secondary spread. When we used this modified helper construct, which minimized co-packaging of Sindbis virus 
Defective Helper RNA, we almost completely eliminated secondary infection, and were unable to detect any more 
spikes by sequencing (Fig. S1g). Sindbis virus packaged by DH-BB(5’SIN;TE12ORF) thus fulfills the requirements 
for use in MAPseq. In all subsequent MAPseq experiments we used viral libraries prepared with the modified helper 
virus. 

 

Supplemental Note 2: Labeling neurons with barcodes 
In MAPseq we randomly label neurons with barcodes from a viral library to provide them with a unique identity. 
Ideally, every infected neuron would have a single, unique barcode. There are two deviations from this ideal 
scenario: (i) multiple neurons per barcode; and (ii) multiple barcodes per neuron. We consider the implications of 
the former in more detail below.  

Multiple neurons per barcode 

Multiple neurons per barcode, i.e. degenerate labeling, is problematic as it leads to incorrect results. Consider for 
example two neurons, A and B, that project to distinct cortical target areas. If by chance A and B are labeled with 
the same barcode (e.g. barcode 43), then MAPseq will return the merged projection pattern of A and B as the 
projection pattern of barcode 43 (Fig. 3c). While this is indeed the projection pattern of barcode 43, it cannot be 
interpreted as the projection of a single neuron. Errors of this type can be avoided by using sufficiently diverse viral 
libraries, thereby minimizing the probability that the same barcode will label two different neurons. This implies that 
the requisite diversity of the viral library depends on the number of neurons infected.  

Here we formulate the mathematical problem: Given a population of k neurons, labeled randomly from a pool of N 
barcodes, what is the probability that a given neuron will be uniquely labeled? This is closely related to the problem: 
What is the probability that a given barcode will appear in more than one neuron? These problems are related to the 
classical problem of drawing balls with replacement from an urn, where every ball corresponds to a barcode 
sequence, and the probability of drawing each ball is determined by the abundance of this barcode in the library. 

We first consider a simplified case, in which we assume that every barcode is equally abundant in the virus library, 
i.e. that the barcode probability distribution is uniform. What then is the expected number of neurons that share a 
barcode with at least one other labeled cell? If there are only two neurons A and B, then the probability of neuron B 
having the same barcode as neuron A is P(A)=1/N, so the probability that A's barcode is unique is 1-P(A). 
Generalizing to k infected neurons, the probability that A's barcode is unique is (1-P(A))(k-1), and the probability that 



it is not unique is 1-(1-P(A))(k-1). As the expected value of a sum is the sum of its expected values, the expected 
number of non-uniquely labeled neurons is  

E(X) = k(1-(1-P(A))(k-1)). 

The fraction of uniquely labeled neurons F is then 

 F = 1-E(X)/k = (1-P(A))(k-1) = (1-1/N)(k-1).  

Similarly, the expected number D of barcodes used more than once is  

D=(k2)/(2N), 

where N is the number of barcodes and k is the number of infected cells, and we have assumed N>>k.  

Now, let us consider the more realistic case, in which the distribution of barcode abundance is not uniform, so 
neurons are more likely to be labeled with some barcodes than others. To calculate the expected value of non-
uniquely labeled neurons in this case, we generalize the reasoning above by including a sum over all barcodes, 
weighted by their probability. E(X) is then given by 

 𝐸 𝑋 = 𝑘 ∗ 𝑝!(1 − 1 − 𝑝! !!!!
!!! ) ,  

where pi is the probability of barcode i=1..N, k is the number of infected neurons and N is the total number of 
barcodes in the virus library. 

To determine the empirical distribution of barcodes in the virus library, we directly sequenced the genomic RNA of 
an aliquot of our Sindbis virus. Sequencing was performed at sufficient depth to overcome Poisson sampling 
introduced by Illumina sequencing. After error correction, the absolute abundance of different barcode sequences is 
a direct measure of the barcode probability distribution (Fig. 3e). Despite error correction, there is a chance of 
including erroneous barcode sequences when counting barcodes that have a very low molecule count. For all 
calculations, we therefore chose a conservative threshold, and required at least 3 counts for barcodes to be included 
in the virus library. Based on this empirically determined distribution of barcode abundances, we then calculated the 
fraction of uniquely labeled cells as a function of the number of infected cells based on the above derivations (Fig. 
3f). Simulations indicate that removing the most abundant barcodes have little effect on the capacity of the library to 
label neurons uniquely (Fig. S2a). These results indicate that the observed non-uniformity in the abundance of 
barcodes in the library does not substantially interfere with the capacity of the library to uniquely label large 
numbers of cells. 

 

Supplemental Note 3: False positive and negative rates of MAPseq 
MAPseq false negative rate 

Like every experimental method, MAPseq is susceptible to both false negatives and false positives. First, we sought 
to relate the efficiency of MAPseq and thus its false negative rate to established neuroanatomical methods. MAPseq 
is conceptually closest to GFP-based methods (Oh et al., 2014; Zingg et al., 2014), in which a genetically-encoded 
fluorophore is expressed in a neuronal population, and fluorescence is detected in targets. The sensitivity and 
selectivity of such fluorophore-based methods depend on many factors, including expression level, imaging 
conditions, background fluorescence, etc. To our knowledge there has not been a rigorous and precise quantification 
of the sensitivity and selectivity of such methods, which would allow us to compute e.g. the probability of detecting 
a small axon for e.g. a given fluorophore expression level, etc; nor indeed is it clear how one would ground-truth 
such a quantification. Moreover, direct comparison of MAPseq and fluorophore-based methods on a section-by-
section basis would be challenging because the optimal conditions for imaging and RNA extraction differ. We 
therefore did not attempt a quantitative comparison of the efficiency of MAPseq with that of fluorophore-based 
methods.  

Instead, we compared the efficiency of MAPseq to that of another well-established method, Lumafluor retrobeads 
which allows us to directly compare the efficiency of bead labeling and MAPseq within the same animal. Briefly, 
we injected red retrobeads into the olfactory bulb, and MAPseq Sindbis virus into LC (Fig. S6). Retrobeads taken up 
by axons in the olfactory bulb are actively transported back to cell bodies and label bulb-projecting cells. Barcodes 
from infected LC cells that are labeled with retrobeads should therefore be present in the bulb. The fraction of 



barcodes recovered from retrobead-labeled LC neurons that are also detected in the olfactory bulb by MAPseq thus 
provides a neuron-by-neuron estimate of the MAPseq false-negative rate.  

To calculate this measure of efficiency, we performed MAPseq on the olfactory bulb and sequenced the barcode 
complement of individual bead and Sindbis labeled LC cells by dissociating LC, and picking individual red and 
green cells using glass pipets (Sugino et al., 2006). Producing a single cell suspension from tissue slices involves 
digestion of the extracellular matrix and trituration of the tissue, which inevitably leads to breaking of processes and 
release of barcode mRNA into the bath. Given the very high expression levels of Sindbis virus, it was critical to 
determine the contribution of barcodes present freely floating in the bath or in cell debris, as these barcodes will be 
collected alongside the labeled cells and sequenced, and will later be indistinguishable from cell resident barcodes 
except for their abundance. We measured this background noise distribution by collecting cells that were GFP-
negative, but were bead labeled. Since GFP-negative neurons do not express barcodes, any barcodes recovered from 
such cells represent contamination. We used the level of such contamination to establish the threshold for true 
barcode expression in intact isolated neurons. 

We collected 45 neurons that were labeled with both GFP/barcodes and with red retrobeads from the olfactory bulb, 
and 9 neurons labeled only with red retrobeads to determine the background noise level of barcode expression. We 
found that MAPseq efficiency is high: 91.4+/-6% (mean +/- std error) of all barcodes from cells that project to the 
bulb as determined by bead labeling also appear to project to the bulb by sequencing (across 3 animals; Fig. S6d). 
This estimate is robust over a large range of reasonable estimates for the level of background barcode contamination 
(Fig. S6f). We therefore conclude that the false negative rate of MAPseq is 8.6+/-6%.  

MAPseq false positive rate 

A false positive event in MAPseq is the detection of a barcode in a target area to which the neuron expressing the 
barcode does not project. There are two potential sources of false positives. First, we might correctly detect a 
barcode that does indeed target this particular area, but we might mistakenly identify it as a different barcode (due 
e.g. to sequencing errors). Alternatively, barcodes that arise from other samples (slices), or from outside sources, 
might contaminate the target sample. (A third kind of error, those arising from insufficient barcode diversity, might 
also be considered a special case of false positives, but are considered separately above in “Unique labeling of 
neurons with barcodes”). 

Due to the large combinatorial space of barcodes, it is exceedingly unlikely to mistake one barcode for another 
because of PCR or sequencing errors (see Supplemental Note 4). Contamination, however, is a concern and needs to 
be quantified.  

LC neurons project primarily to the ipsilateral hemisphere (Waterhouse et al., 1983), and only a small fraction of LC 
neurons project to both ipsilateral and contralateral cortex (Room et al., 1981). Quantifying the projection strength 
of neurons to the contralateral hemisphere relative to their projection to the ipsilateral hemisphere therefore provides 
an upper bound on the rate of contamination, and thus on the false positive rate of MAPseq. Note that samples from 
the ipsi- and contralateral hemisphere were processed intermixed and out of order. Cross-contamination between 
samples from the ipsi and contralateral side should therefore be comparable to contamination between samples from 
the ipsilateral side only, and should be a good measure of overall contamination levels. 

We used the MAPseq dataset of the bilaterally injected animal (Fig. 7) to calculate this upper bound to the false 
positive rate. Briefly, we calculated the ratio of the total number of barcode molecules detected in the contralateral 
hemisphere to the total number of barcode molecules detected in the ipsilateral hemisphere for all barcodes that 
projected more strongly to the ipsi- than contralateral side (n=115). The mean ratio, and thus upper bound to the 
MAPseq false positive rate is 1.4+/-0.8% (mean+/-std error). Note that our assumption that LC neurons project only 
ipsilaterally is conservative; violations of this assumption would increase the estimated false positive rate. Thus we 
conclude that MAPseq has a low false positive rate. These results indicate that MAPseq provides both sensitive and 
reliable mapping of long-range projection targets of a large number of neurons. 

 

Supplemental Note 4: Bioinformatics 
Raw MAPseq data consist of two .fastq files containing Illumina sequencing results, where paired end 1 covers the 
barcode sequence, and paired end 2 covers the 12-nt UMI and the 6-nt SSI (Fig. S1h and S3). To convert these 



sequencing data into projection maps, we first preprocessed the data in bash, before analyzing them in Matlab 
(Mathworks). 

Preprocessing of sequencing data.  

Briefly, we stripped the fastq files of their quality information and trimmed the reads to the relevant length, then 
merged paired end 1 and 2 into a single file. Each line of this file corresponded to a single read containing the 30-nt 
barcode, the 2-nt pyrimidine anchor (YY), the 12-nt UMI and the 6-nt SSI. We de-multiplexed the reads based on 
the SSI using the fastx_barcode_splitter tool and filtered the reads to remove any ambiguous bases. We then 
collapsed the reads to unique sequences and sorted them. 

Next, we selected a threshold of how many reads a sequence has to have to be considered for analysis. We were 
guided by earlier work on the effect of PCR amplification during Illumina library generation on next generation 
sequencing data (Kebschull and Zador, 2015). In this previous work, we found that when amplifying a pool of 
unique barcode sequences by PCR, the sequence rank profile of the Illumina results consists of a plateau of 
sequences with roughly equal read counts, followed by a shoulder and a long tail. The tail of this distribution is 
formed almost exclusively by PCR errors. In the MAPseq datasets, we therefore manually selected a minimum read 
threshold to remove the tail of the sequence rank profile from the analysis. This avoids contamination of our dataset 
with large numbers of PCR and sequencing errors and simplifies subsequent error correction and analysis steps. 

We then collapsed the remaining reads (30-nt barcode+YY+12-nt UMI) after removal of the 12-nt UMI to convert 
reads into molecule counts. Note that we here ignored any potential PCR or sequencing errors in the 12-nt UMI, 
which will lead to a slight, but uniform, overestimation of molecule counts as two copies of the same cDNA with an 
error in the UMI only will be counted as two distinct molecules rather than one. 

Split of barcodes from spike-ins.  

Spike-in molecules are barcodes of length 24 followed by the constant sequence ATCAGTCA, and are therefore 
easily distinguished from barcodes expressed from the virus (Fig. S1h). As they carry different information, we split 
the uncorrected barcode data into spike-ins (perfect match to N24ATCAGTCA) and virally expressed barcodes (no 
N24ATCAGTCA sequence, but N30YY) and processed them separately. 

Error correction.  

A random barcode of 30nt length has a potential diversity of 430≈1018 different sequences. If we sample a relatively 
small number of barcodes from this enormous diversity, the chosen barcodes are likely very different from each 
other. Therefore many mutations to any given barcode are necessary to convert it into any other barcode of the 
chosen set. 

We exploited this fact to correct errors in the sequenced barcodes. Using the short read aligner bowtie (Langmead et 
al., 2009), we performed an all-against-all mapping of all barcode sequences with >1 counts, allowing up to 3 
mismatches, and forcing bowtie to output all possible alignments. We then constructed a connectivity matrix of all 
barcode sequences, where bowtie alignments are the connections between sequences. We used Matlab to find all 
connected graph components, that is all barcodes that mapped to each other, and collapsed the molecule counts of 
each of the members of such a connected component to the sequence of the most abundant member.  We then 
removed low complexity sequences—a common artifact of Illumina sequencing—by filtering barcodes with 
stretches of more than 6 identical nucleotides. Finally, we compared all error corrected barcode sequences to the 
error corrected barcode sequences found in the original virus library and kept only those barcodes for analysis that 
had a perfect match in the virus library.  

Code for preprocessing of all MAPseq libraries can be found in preprocessing.sh and matlab_preprocessing.m. The 
viral library was processed using viruslibrary_preprocessing.sh and viruslibrary_matlabcode.m. 

Analyzing the projection pattern.  

The described workflow results in a list of barcode sequences and their molecule counts in each target area and the 
injection site. Using Matlab, we then matched the barcode sequences in the injection site (reference barcodes) with 
the barcode sequences in the target sites, constructing a barcode matrix of size [# of reference barcodes]x[# of target 
sites + # of injection sites] which then acts as the basis of all further analysis. Note that barcodes that appear in 
target areas and not the injection site (‘orphans’) are very rare and have low abundances, consistent with an 
interpretation of orphan barcodes as contaminants. 



To exclude low confidence projection patterns from analysis, we required each barcode to have more than 100 
counts in the injection site and at least one target area with more than 30 counts.  

Code can be found in producebarcodematrix_unilateral.m and producebarcodematrix_bilateral.m. 

Barcode matrix normalization.  

Raw barcode counts are very useful to survey the data available and to form intuitions about the mapped projection 
patterns. However, to compute summary statistics, we normalized the raw barcode matrix. We first normalized each 
target area by the number of unique spike-in molecules detected in each, to normalize for varying reverse 
transcription, PCR or library making efficiencies. We then normalized each area by the amount of β-actin per µl of 
total RNA (as measured by qPCR) to correct for varying tissue input and RNA extraction efficiencies. Lastly, we 
normalized all barcodes to sum to 1 across all target areas to correct for different expression levels of different 
barcodes. 

Code for all analysis of the barcode matrix can be found in analyse_unilateralinjections.m and 
analyse_bilateralinjections.m. The raw and normalized projection patterns of all 995 traced neurons can be found in 
bigmatrixcounts.mat and bigmatrix.mat, respectively. 

Peak finding.  

To summarize LC projection patterns, we set a number of criteria to define peaks for each barcode. First, peaks need 
be at least half as high as the maximal barcode count across all target sites. Second, peaks need to be separated by at 
least 3 slices, and third, peaks need to rise at least their half maximal height from their surroundings (‘prominence’). 
Code used to find peaks can the found in detectpeaks.m. 

Identification of double-infected cells.  

In order to identify pairs of barcodes that originated from double-infected cells, we looked for projection profiles 
from individual mice that are more similar than expected for barcodes from different cells. Briefly, we calculated the 
minimum pairwise Euclidean distance of every barcode profile to any other barcode profile of a particular mouse in 
z-scored space (“within mouse”). We then constructed a null-distribution by repeatedly calculating the minimum 
pairwise distances for every barcode profile from that mouse to a random sample of the same size of barcodes 
profiles obtained by sampling the other three mice in this MAPseq dataset (“between mice”). Distances that appear 
in the “between mice” null-distribution result from the similarity of the projection profiles of different cells. 
Therefore, distances in the “within mouse” set lower than those explained by this null distribution suggest that the 
two barcode profiles are more similar than would be expected for two separate cells. The two barcodes that 
correspond to this low distance probably arise from a single double-infection cell. Accordingly, we defined those 
barcode pairs as originating from double-infected cells that had distances in the left tail of the null distribution 
subject to Bonferroni correction for multiple hypothesis testing. 

To estimate the overall number of barcodes from double-infected cells in every animal, we calculated area between 
the probability density function of the “within mouse” distances and the “between mouse” distances and multiplied 
it by the total number of barcode pairs in the dataset. We then took the number of barcode pairs as our estimate of 
the number of barcodes in double infected cells, which corresponds roughly to 2x the number of double infected 
cells. 

Code for this analysis can be found in finddoubles.m. 

Single cell analysis.  

Code for analysis of single cells sequencing data can be found in preprocessing_singlecells.sh, 
matlab_preprocessing_singlecells.m and analyse_singlecells.m. 

False positive rate.  

Code for the calculation of the false positive rate can be found in analyse_bilateralinjections.m. 

Dimensionality reduction and clustering.  

Code for t-SNE dimensionality reduction and hierarchical clustering of cortico-cerulear neurons can be found in 
doclustering.m. 

 



Supplemental Note 5: Spike-in recovery 
To assess the efficiency of barcode recovery in MAPseq, we added a known amount of spike-in RNA (Fig. S1h) into 
every sample (Fig. 4a, Fig. S3) and quantified the number of distinct spike-in molecules in the sequencing results. 
The ratio of the number of recovered spike-in molecules to the number of input molecules then is the probability of 
detection of any given barcode molecule.  

Detection efficiencies are relatively constant across areas and animals (Fig. S7c,d) and average to 
P(detection)=0.024 for target areas. This implies that when we do not detect a barcode in an area, there are less than 
123 barcode mRNA molecules present in that sample with a confidence >95%, as dictated by the negative binomial 
distribution.  

Note here, that this measure of barcode detection probability is based on the efficiency of going from total RNA to 
sequencing results. It is blind to losses incurred during extraction of total RNA from tissue, such that the overall 
MAPseq detection efficiency is likely somewhat lower than what we estimate. 

 

  



Supplemental Figures 

 
Figure S1; related to Fig. 1 and Fig 2 

Barcodes are delivered to LC neurons using recombinant Sindbis virus. (a-g) The replacement of the conventional 
packaging system, DH(26S)5’SIN, with a modified packaging system we developed, DH-BB(5’SIN;TE12ORF), 
largely eliminates infection of cells distal to the injection site. After injection of conventionally packaged virus, (a,b) 
in situ hybridization for barcode mRNA labels cells far away from the injection site. Pink arrow = primary injection 
site; black arrows = secondary infection. (c,d) Similarly we can detect GFP positive cells or clusters of cells far 
away from the injection site after injection of conventionally produced virus. Scale bar = 50µm. (e) MAPseq data 



produced using DH(26S)5’SIN packaged virus shows spurious barcodes with extremely high abundance in a single 
target site only (“spikes”), which arise from barcodes expressed in cortical somata secondarily infected by 
propagation of viral particles from the axons of infected LC neurons. (f) Expression levels of these high abundance 
barcodes are comparable to that of barcodes in the injection site. (g) Changing the packaging system to the new DH-
BB(5’SIN;TE12ORF) produces a propagation incompetent Sindbis virus and eliminates these high abundance 
barcodes. All MAPseq results described in this manuscript made use of this new virus. (h) Differences in the 
sequence of viral barcodes and spike-in RNA allow easy discrimination of the two. (i) Structure of the final 
sequencing amplicon. (j,k,l) Stereotaxic injection of Sindbis virus reliably infects LC and fills cell bodies and axons 
with barcode mRNA. (j) Maximum z-projection of a representative Sindbis injection shows excellent overlap with 
the TH-stained LC, confirming successful stereotactic targeting of the nucleus. Scale bar=100µm. (k) Quantification 
of the fraction of infected cells that are also TH+ confirms reliable targeting of LC by streotactic injection. N=6. 
Mean +/- s.d. is shown. (l) RNA in situ of barcode mRNA showing good fills of cell bodies at the injection site. 
Scale bar=50µm.  

 

 

 

 

 

 

 

 

 

 

 

  



 
Figure S2; related to Fig.3 

The diversity of the MAPseq virus library is sufficient to uniquely label many cells. (a) The number of cells that can 
be uniquely labeled using our virus library does not change dramatically when we bioinformatically remove 
overrepresented barcodes from the library. The legend indicates which barcodes are still considered for labeling. (b) 
Position of the three barcodes that were traced in more than one of four animals. Two of the three are highly 
abundant in the virus library. 



 
Figure S3; related to Fig. 4 

MAPseq workflow. (a) We cryosection a flash frozen brain and dissect out areas of interest. We then extract total 
RNA from every area individually. (b) To the total RNA from every area, we add a known amount of spike-in RNA 
and reverse transcription primers containing unique SSIs and UMIs. We produce double stranded cDNA, and digest 
leftover reverse transcription primers using Exonuclease I to avoid UMI containing primers to participate in 



subsequent PCR reactions. We then perform two rounds of nested PCR, bringing in the PE2 sequencing primer 
binding site and P7 sequence as 5’ overhangs of the reverse primer. After gel extraction, the amplicons are ready for 
Illumina sequencing. 

  



 
Figure S4; related to Fig. 5 

MAPseq provides a robust readout of single neuron projection patterns. (a) The same example pairs of barcodes 
profiles that are more similar than expected by chance as shown in Fig 5a. In grey we indicated best matches of the 
barcode profiles across animals from 5 independent samplings of the comparison animal. (b) Cumulative 
distribution function of distances of best barcode pairs within and across animals for animals 1, 3 and 4. 



 
Figure S5; related to Fig. 6 

Aggregate projection of MAPseq traced neurons reproduces homogeneous bulk projection, but individual projection 
patterns are non-homogeneous. (a) There is no correlation between the expression level of a barcode at the injection 
site and its maximum projection strength to a target area. (b) t-SNE dimensionality reduction of cortically projection 
LC neurons reveals an orderly separation of neurons according to their maximum projection location. (c) 
Hierarchical clustering of z-scored projection profiles of cortical projection neurons however reveals no striking 
clustering. (d) Histogram of the number of detected peaks for all MAPseq traced neurons. For peak definitions see 
Supplemental Note 4. (e,f) Simulation of CAV-cre injection and axon tracing from MAPseq data reproduces the 
non-specific output pattern of LC neurons reported by Schwarz et al. (Schwarz et al., 2015).  (e) Reproduction of 
Figure 4d of ref (Schwarz et al., 2015). Briefly, Schwarz et al. injected retrograde CAV-cre virus into a number of 
areas including olfactory bulb and auditory cortex, and cre dependent TVA-mCherry-AAV into LC. They then 
counted the number of mCherry labeled LC axons in a number of output areas and normalized the number of axons 
across all output areas. They could thereby quantify the projection strength of groups of LC neurons defined by their 
projection to the injection site and found that most groups of LC neurons project equally to all output areas. (f) 
Results of our MAPseq data based simulation of the experiment preformed by Schwarz et al, plotted in the same 
way. Briefly, we simulated CAV-cre injections into olfactory bulb or auditory cortex by labeling barcodes that are 



present at more than 50 counts in either olfactory bulb or auditory cortex. We then summed up the normalized 
counts of the labeled barcodes in slices containing the output regions and normalized the resulting projection 
strength across all output regions, thus mimicking the counting of labeled axons in output regions. In contrast to the 
idiosyncratic single cell projection pattern reported by MAPseq, this simulation recapitulates the findings of 
Schwarz et al., highlighting the importance of single neuron resolution in connectivity mapping. OB = olfactory 
bulb; AC = auditory cortex; CC = cingulate cortex; SC = somatosensory cortex. Mean +/- s.d. across 4 animals is 
shown. 

  



 
Figure S6; related to Fig. 6 

Sequencing of single LC cells reveals low MOI and high MAPseq efficiency. (a) Overview of the experimental 
design. Red Lumafluor retrobeads label bulb projecting cells in LC. Barcodes present in these cells should also be 
present in the bulb. (b) Overview image of LC, showing bead and GFP labeling of cells. Scale bar = 100µm. (c) 
Detailed image of retrobeads and GFP labeled cells. Scale bar = 10µm. (d) Scatter plot showing the relationship of 



barcode abundance in the olfactory bulb to barcode abundance in individual cells. The dashed line indicates the 
minimum barcode abundance in the bulb chosen as detection threshold. (e) Scatter plot of abundance of all barcodes 
found in the sequenced single cells for both bead and Sindbis labeled cells (n=45 from 3 animals, green) and 
negative control cells (bead labeled only; n=9 from 3 animals; red). Dotted line indicates the height of the most 
abundant barcode from red only cells, the threshold chosen to distinguish real from artefactual barcodes. (f) MAPseq 
efficiency as a function of an increasingly stringent noise threshold. The MAPseq efficiency estimate is not very 
sensitive to changes in the threshold value. Shaded area indicates s.d. across animals. 

 

 

 

 

 

 

 

 

 

 

  



 
Figure S7; related to Fig. 6 

MAPseq can be performed on small target areas. (a) Schematic of dissected areas. FC = frontal cortex; M1 = 
primary motor cortex; PC = piriform cortex; V1 = primary visual cortex. (b) A heatmap of all ~140 neurons traced 
across 3 independent animals using DH(26S)5’SIN packaged MAPseq virus. We removed all ectopically infected 
cells (see Fig. S1f) that could have confused tracing results by a maximum abundance cutoff of 1000. Preferential 
targeting of different ipsilateral areas is clearly evident. (c,d) Efficiency of barcode recovery from total RNA 
samples in MAPseq is relatively constant across areas (c; n=4 animals) and animals (d) as measured by spike-in 
RNA recovery. The mean and 95% confidence intervals are indicated. 

	  

 
 
 

	  
 

 
 

  



Extended Experimental Procedures  
MAPP-nλ  

MAPP-nλ is a modified version of pre-mGRASP (Kim et al., 2011). We stripped the pre-mGRASP protein of the 
2A-cerulean fusion and added four repeats of the nλ RNA binding domain (Daigle and Ellenberg, 2007) in the 
cytoplasmic tail after amino acid 287 of the original pre-mGRASP sequence. We also added a Myc epitope tag 
followed by the CLIP-tag domain (Gautier et al., 2008) after amino acid 59 of the original pre-mGRASP protein. 

Sindbis virus barcode library 

The virus used in this study is based on a dual promoter pSinEGdsp construct (Kawamura et al., 2003). We inserted 
MAPP-nλ after the first subgenomic promoter. Downstream of the second subgenomic promoter, we inserted the 
GFP coding region followed by closely spaced NotI and MluI restriction sites and four repeats of the boxB motif 
(Daigle and Ellenberg, 2007). Using this construct, we produced a high diversity plasmid library by inserting a 
diverse pool of double stranded ultramers (Integrated DNA Technologies) with sequence 5’-AAG TAA ACG CGT 
AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TNN 
NNN NNN NNN NNN NNN NNN NNN NNN NNN NYY GTA CTG CGG CCG CTA CCT A-3’ between the 
NotI and MluI sites. We then produced Sindbis virus as previously described (Kebschull et al., 2016) using either 
the conventional DH(26S)5’SIN helper (Bredenbeek et al., 1993) or the new DH-BB(5’SIN;TE12) (Kebschull et al., 
2016) helper. We determined the titer of the resulting virus by qPCR as previously described (Kebschull et al., 2016) 
and determined the viral library diversity by Illumina sequencing of the RNaseI protected genomic virus RNA. Both 
the genomic construct and the helper construct are available from Addgene under accessions 73074 and 72309, 
respectively. 

Injections 

Animal procedures were approved by the Cold Spring Harbor Laboratory Animal Care and Use Committee and 
carried out in accordance with National Institutes of Health standards.  

We pressure injected 180nl of 2x1010 GC/ml barcoded Sindbis virus uni- or bilaterally into LC of 8-10 week old 
C57BL/6 males (Jackson Labs) as described (Cetin et al., 2007). We leveled the animal skulls on two axes using 
lambda and bregma for the AP axis and 2mm laterally from the midpoint between lambda and bregma for the lateral 
axis. We used coordinates AP=-5.4mm, ML=0.8mm, DV=2.9mm and 3.1mm for LC and measured depth from the 
surface of the brain. We injected each DV coordinate with 90nl of virus, waiting ten minutes in between each depth. 
We sacrificed animals 44 hours post injection. For immunofluorescence, RNA in situ and histology, we 
transcardially perfused animals with ice cold saline (9g/l) followed by 4% paraformaldehyde (Electron Microscopy 
Sciences) in 0.1M Phosphate buffer. For RNA work we extracted the fresh brain and flash froze it on dry ice.  

For measurements of MAPseq efficiency, we injected red retrobeads (Lumafluor) into the right olfactory bulb of 8-
12 week old C57BL/6 males (Jackson Labs). Briefly, we roughly determined the center of the right olfactory bulb, 
and measured +/-1mm from the center in the AP axis and performed two craniotomies 2mm apart. We sonicated the 
beads for 20 minutes prior to injection to homogenize the solution and injected 210nl of stock concentration of 
beads at three different depths (0.3mm, 0.6mm and 0.9mm DV from the surface of the olfactory bulb) as described 
(Cetin et al., 2007). Twenty-four hours later, we injected barcoded Sindbis virus into right LC as above and 
sacrificed the animals 44-48 hours after Sindbis injection. 

Immunofluorescence and ISH 

We performed anti-GFP staining and RNA in situ hybridization on 6µm thick paraffin sections. For 
immunofluorescence, we used a rabbit anti-GFP antibody ab290 (Abcam; RRID:AB_303395) after heat induced 
antigen retrieval. We performed RNA in situ hybridization using the Panomics ViewRNA ISH Tissue kit 
(Affymetrix) using anti-GFP probe VF1-10141 according to the manufacturer’s protocol (10 minutes boiling and 10 
minutes protease treatment). We performed anti-TH staining on floating 70µm vibratome sections using rabbit anti-
TH antibody SAB4300675 (Sigma-Aldrich; RRID:AB_11130236). 

Spike-in RNA 

To produce spike-in RNA, we double stranded an ultramer (Integrated DNA Technologies) with sequence 5’-GTC 
ATG ATC ATA ATA CGA CTC ACT ATA GGG GAC GAG CTG TAC AAG TAA ACG CGT AAT GAT ACG 
GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC TNN NNN NNN NNN 



NNN NNN NNN NNN NAT CAG TCA TCG GAG CGG CCG CTA CCT AAT TGC CGT CGT GAG GTA CGA 
CCA CCG CTA GCT GTA CA-3’ and then in vitro transcribed the resulting dsDNA using the mMessage 
mMachine T7 in vitro transcription kit (Thermo Fisher) according to the manufacturer’s instructions.  

qPCR 

We reverse transcribed total RNA using oligodT primers and Superscript III reverse transcriptase (Thermo Fisher) 
according to the manufacturer’s instructions. We then quantified the amount of barcode and β-actin cDNA by qPCR 
in SYBR green power master mix (Thermo Fisher) according to the manufacturer’s instructions  using primers 5’-
GAC GAC GGC AAC TAC AAG AC-3’ and 5’-TAG TTG TAC TCC AGC TTG TGC-3’ for barcode cDNA and 
5’-CGG TTC CGA TGC CCT GAG GCT CTT-3’ and 5’-CGT CAC ACT TCA TGA TGG AAT TGA-3’ for β-
actin cDNA. 

MAPseq 

We cut 300µm thick coronal sections of fresh frozen brains using a Leica CM 3050S cryostat at -12oC chamber 
temperature and -10oC object temperature. To avoid cross-contamination between samples, we took care to cut each 
section with a fresh, unused part of the blade. We melted each section onto a clean microscope slide and rapidly 
froze the section again on dry ice before dissecting out the cortex on dry ice using a cold scalpel blade. During 
dissection, we aimed to avoid known fiber tracts to minimize the contamination of our dataset with fibers of 
passage. After sample collection, we processed all samples out of order to avoid potential sample cross-
contamination from impacting interpretation of MAPseq results. 

We extracted total RNA from tissue samples using Trizol reagent (Thermo Fisher) according to the manufacturer’s 
instructions. We mixed the total RNA from the tissue samples with spike-in RNA. We then produced ds cDNA as 
previously described (Morris et al., 2011) using a gene specific primer of from 5’-CTT GGC ACC CGA GAA TTC 
CAN NNN NNN NNN NNX XXX XXT GTA CAG CTA GCG GTG GTC G-3’, where XXXXXX is one of 65 
trueseq like SSI and N12 is the UMI. We then cleaned the reaction using the Qiagen MinElute PCR purification kit 
according to the manufacturer’s instructions and treated the eluted ds cDNA with ExonucleaseI (New England 
Biolabs) to remove remaining primers. We amplified the barcode amplicons by nested PCR using primers 5’- ACG 
AGC TGT ACA AGT AAA CGC GT-3’ and 5’-CAA GCA GAA GAC GGC ATA CGA GAT CGT GAT GTG 
ACT GGA GTT CCT TGG CAC CC GAG AAT TCC A-3’ for the first PCR and primers 5’-AAT GAT ACG GCG 
ACC ACC GA-3’ and 5’- CAA GCA GAA GAC GGC ATA CGA-3’ for the second PCR in Accuprime Pfx 
Supermix (Thermo Fisher). We then gel extracted the amplicons using the Qiagen MinElute Gel extraction kit 
according to the manufacturer’s instructions and pooled the individual sequencing libraries based on qPCR 
quantification using primers 5’-AAT GAT ACG GCG ACC ACC GA-3’ and 5’- CAA GCA GAA GAC GGC ATA 
CGA-3’. We then sequenced the pooled libraries on an Illumina NextSeq500 high output run at paired end 36 using 
the SBS3T sequencing primer for paired end 1 and the Illumina small RNA sequencing primer 2 for paired end 2.  

Efficiency measurements and single cell isolation 

After transcardial perfusion with ice-cold artificial cerebrospinal fluid (127mM NaCl, 25mM NaHCO3, 1.25mM 
NaPO4, 2.5mM KCl, 2mM CaCl2, 1mM MgCl2, and 25mM D-glucose), we extracted the unfixed brain and flash 
froze the bead-injected olfactory bulb on dry ice before processing it for sequencing as described above. We cut 
400µm thick acute sagittal slices of the remaining right hemisphere in dissection solution (110mM choline chloride, 
11.6mM ascorbic acid, 3.1mM Na pyruvic acid, 25mM NaHCO3, 1.25mM NaPO4, 2.5mM KCl, 0.5mM CaCl2, 
7mM MgCl2, and 25mM D-glucose) using a Microm HM650V vibratome. We incubated sections containing LC in 
artificial cerebrospinal fluid (126mM NaCl, 20mM NaHCO3, 3mM KCl, 1.25mM NaH2PO4, 2mM CaCl2, 2mM 
MgSO4, and 20mM D-glucose) containing synaptic blockers (0.05mM APV, 0.02mM DNQX and 0.1µM TTX) for 
20 minutes at room temperature. We then digested the slices in artificial cerebrospinal fluid with streptomyces 
griseus protease (Sigma P5147) at 1mg/ml at room temperature for 30 min. After washing in artificial cerebrospinal 
fluid with synaptic blockers, we dissected LC from the digested section and triturated the tissue to produce a single 
cell suspension. Using an inverted fluorescent microscope (Zeiss Observer), we picked individual cells by hand, 
deposited the cells directly into lysis buffer (2.4µl 0.2% triton, 1µl 10mM dNTPs, 1µl 10mM RT primer per cell) 
and proceeded to preparing sequencing libraries from the cells as described above for tissue samples. 

 

 



Animals used 

Number of animals Manipulation Figures based on these animals 

4 Right LC injection with MAPseq virus; dissection of 
right cortex and olfactory bulb; qPCR and sequencing 
of barcode RNA 

Fig. 2e, 4, 5, 6 

Fig. S1, S2, S4, S5, S7c,d 

2 Right LC injection with MAPseq virus; dissection of 
right and left cortex; qPCR of barcode RNA 

Fig. 2f 

1 Bilateral LC injection with MAPseq virus; dissection of 
right and left cortex and olfactory bulb; qPCR and 
sequencing of barcode mRNA 

Fig. 7 

3 Right LC injection with MAPseq virus and retrobeads 
injection into right olfactory bulb; single cell isolation 
from LC 

Fig. 3b;  

Fig. S6 

3 Right LC injection with DH(26S)5’SIN packaged 
MAPseq virus and dissection of select cortical targets 
and the olfactory bulb and sequencing of barcode 
mRNA 

Fig. S7a,b 

6 Right LC injection with DH(26S)5’SIN packaged 
MAPseq virus. TH staining of LC and quantification of 
overlap and count of TH+ neurons 

Fig. S1j,k,l 

3 Right LC injection with DH(26S)5’SIN packaged 
MAPseq virus; ISH for barcode mRNA and IF for GFP 
protein 

Fig. 3b 

Fig. S1a-d 

2 

 

Right LC injection with DH(26S)5’SIN packaged 
MAPseq virus and dissection of the olfactory bulb and 
ipsilateral cortex and sequencing of barcode mRNA 

Fig. S1e,f 
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