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Odors are carried through turbulent media (air or water), and the 
signals arriving at the olfactory sensors vary both in intensity and 
in duration1. Active sampling behaviors, including sniffing, whisk-
ing and head movements, add further fluctuations to the signal2,3. 
Animals routinely identify odors of interest (e.g., food or mates) and 
locate their source within a fluctuating, multi-odor background4–7. 
However, how the olfactory system integrates intermittent and mul-
tiplexed odor inputs to simultaneously extract identity and inten-
sity of multiple odors, as well as the precise timing of their arrival,  
remains unknown.

Representation of odor identity is well characterized in the input 
layer (glomeruli) of the olfactory bulb (OB). Selectivity of individual 
olfactory receptor neurons (ORNs) for subsets of odors and con-
served projections of ORNs to glomeruli give rise to distinct, odor-
specific spatiotemporal activity patterns on the OB surface8–12. Local 
microcircuits allow integration of inputs from multiple glomeruli, 
transforming the spatially distributed glomerular patterns into tem-
poral codes at the level of individual M/T cells13. Phasic tuning of 
M/T cell responses to the respiratory cycle (respiration tuning)14,15 
further increases the temporal diversity of odor responses16–18. The 
diverse, odor-specific latencies of M/T cell responses during respi-
ration have been proposed as a substrate for coding odor identity  
(latency coding)19–21.

Odor stimuli themselves vary in time. This challenges a temporal 
framework for coding odor identity: how do M/T cells encode fluctua-
tions within the stimulus, over and above the temporal shifts in their 
responses that encode odor identity? This is further complicated by 
other features of odor stimuli (e.g., variations in concentration or in 
composition of odor mixtures) that also temporally modulate M/T 
cell responses. For instance, increasing odor concentration recruits 
additional glomeruli8–10,12 and alters M/T cell firing patterns. At 
higher concentrations, M/T cells tend to not only fire earlier in the 

respiratory cycle but also exhibit extended inhibitory responses16,22. 
Similarly, temporal shifts in M/T cell firing with respect to the 
respiratory cycle have been shown to be characteristic of mixture 
responses16,23. Although glomerular activity patterns in response 
to odor mixtures generally overlap with the respective individual 
odor activation maps in the glomeruli12,24, neither the behavioral 
percepts25,26 nor the individual M/T cell firing patterns23 are simple 
sums of the individual odor contributions.

An effective M/T cell encoding scheme is therefore highly con-
strained. It must retain simultaneous information about odor iden-
tity, intensity and timing, despite multiple observations of apparent 
spillover of identity, intensity and mixture information into the  
time domain.

Technical limitations27 in controlling spatiotemporal dynamics of 
odor stimuli have posed constraints in the investigation of coding 
mechanisms for temporally patterned olfactory stimuli. Additional 
complexities induced by the periodic nature of respiration-driven 
odor sampling have restricted such in vivo studies mostly to insect 
systems.

Recent work has shown linear, temporal integration of inputs of 
individual odors in Drosophila ORNs28,29. A few groups have explored 
summation properties of projection neurons (PNs, M/T cell analogs) 
in locust and fish olfactory systems, comparing responses of simul-
taneous and sequential presentation of two odors30–32. These stud-
ies report nonlinear encoding at the levels of both individual and 
large numbers of PNs, proposing that odor identity is encoded in 
the time-trajectory of ensemble activity of PNs30,31,33. Trajectories 
for binary mixtures are distinct from those of the components and 
depend nonlinearly on the sequence of odor presentation. In rodents, 
two studies examined M/T cells responses to static binary mixtures, 
reaching opposing conclusions about linearity of response sum-
mation16,23. Summation of time-varying odor inputs has not been 
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Olfactory bulb coding of odors, mixtures and sniffs is a 
linear sum of odor time profiles
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The olfactory system receives intermittent and fluctuating inputs arising from dispersion of odor plumes and active sampling 
by the animal. Previous work has suggested that the olfactory transduction machinery and excitatory-inhibitory olfactory bulb 
circuitry generate nonlinear population trajectories of neuronal activity that differ across odorants. Here we show that individual 
mitral/tufted (M/T) cells sum inputs linearly across odors and time. By decoupling odor sampling from respiration in anesthetized 
rats, we show that M/T cell responses to arbitrary odor waveforms and mixtures are well described by odor-specific impulse 
responses convolved with the odorant’s temporal profile. The same impulse responses convolved with the respiratory airflow 
predict the classical respiration-locked firing of olfactory bulb neurons and several other reported response properties of M/T 
cells. These results show that the olfactory bulb linearly processes fluctuating odor inputs, thereby simplifying downstream 
decoding of stimulus identity and temporal dynamics.
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explored, with the exception of one recent study in the locust olfac-
tory system that also reported nonlinear summation of inputs within 
and across odors34.

We used precisely controlled, arbitrary time-varying stimuli and  
respiration-decoupled odor sampling to investigate M/T cell responses 
to fluctuating inputs of individual odors and their binary mixtures, 
as well as across different concentrations of a given odor. In contrast  
to the results of previous studies, we have found that individual  
M/T cells respond to temporally interleaved inputs of individual odors 
and their mixtures in a surprisingly linear manner. This simple linear  
model accurately captures the odor-specific respiration tuning of  
M/T cells responses, a characteristic feature of respiring animals.  
Further, we show that latency coding of odor identity and temporal 
diversity of M/T cells across the respiration cycle are emergent proper-
ties of linear summation.

RESULTS
Precisely controlled time-varying odor stimuli
To characterize M/T cell responses to time-varying odor stimuli, 
we developed an odor delivery system capable of generating odor 
stimuli of arbitrary temporal structure at fast time scales (~20 Hz) 
(Fig. 1a,b). Serial air dilutions of saturated odor vapor and careful 
selection of carrier flow rates conferred linear control of output odor 
concentration, fast kinetics and high reproducibility across trials. 
Importantly, the system maintained stable flow rates during air-odor 
transitions so as to avoid mechanosensory ORN activation35 (Fig. 1b, 
Supplementary Fig. 1 and Online Methods).

In mammals, odor sampling is coupled to inhalation, which 
itself results in temporal patterning of odor inputs. To main-
tain direct control on the stimulus amplitude and timing, we 
used double tracheotomy16 to decouple odor sampling from 
respiration in anesthetized rats (Fig. 1c and Online Methods). 

We recorded M/T cell responses to time-varying stimuli using 
extracellular tetrodes (Fig. 1c,d). Stimulus patterns included indi-
vidual pulses of variable duration (50–2,000 ms), paired pulses of 
varying interpulse intervals (50–1,000 ms) and pseudo-random 
fluctuating patterns34 (Online Methods). M/T cells showed odor-
specific excitatory and/or inhibitory responses for each stimulus 
pattern (Fig. 1d). Consistent with previous studies, we did not 
observe respiratory modulation of responses in the tracheotomized  
animals16,36.

M/T cells linearly sum odor inputs in time
For each odor-cell pair, we estimated an odor kernel that best 
described the response of the cell to a brief odor pulse (Fig. 2a,b). 
To this end, we used half of the stimulus-response pairs recorded 
for a given cell (training data set) and minimized the least-square 
error between the experimentally observed and predicted response 
for these select stimuli (Online Methods). We found that the response 
of the cell to other arbitrary time-varying patterns of the same odor 
(cross-validation data set) was reliably predicted by convolving the 
estimated odor kernel with the odor waveform, measured by a photo-
ionization detector27 (PID) (Fig. 2c).

The model reliably predicted both excitatory and inhibitory odor 
responses (Fig. 2c). Predicted inhibitory responses appeared as nega-
tive firing rates and overlapped with the experimentally observed 
periods of zero firing (Supplementary Fig. 2). Interestingly, the 
amplitude of inhibitory responses was unmasked during the overlap 
of the excitatory and inhibitory components of the response evoked by 
an odor when more than one pulse was delivered in close succession 
at different interpulse intervals (Supplementary Fig. 2). Consistent 
with this idea, we found that kernels could be estimated from the 
response to a single pseudo-randomly fluctuating pattern spanning 
a large range of interpulse intervals.
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Figure 1 M/T cell responses to time-varying odor stimuli in the  
anesthetized, tracheotomized rat. (a) Schematic of the odor  
delivery system. The saturated odor stream is produced by  
bubbling the carrier nitrogen/air stream (0.5 l/min) through a  
selected vial (e.g., odor A) in the odor panel, diluted tenfold and  
directed to the final manifold at a regulated flow rate (0.5 l/min).  
Two pairs of anti-coupled solenoid valves allow rapid switching of  
the odor and flow rate matched clean air streams between rat and  
exhaust. A final approximately tenfold dilution by a fast carrier  
stream (5 l/min) ensures rapid kinetics and constant output flow. Pairs of valves simultaneously on (red) or off (blue) are indicated in the same color.  
(b) Observed output profile for amyl acetate (1% saturation) for a pseudo-random sequence of odor pulses. Vertical green bars mark odor valve on 
periods. Black and red lines show simultaneously measured, average read-outs of a PID (black) and anemometer (red) (sampling rate, 1 KHz). Sensor 
outputs were measured in volts and are plotted here in arbitrary units (a.u.). Gray lines show individual trials (10 trials). Inset shows enlarged view of a 
200-ms-long pulse within the sequence. (c) Schematic of the experimental setup for extracellular single-unit recordings from M/T cells in anesthetized, 
tracheotomized rats. Tetrodes (blue) were inserted in the olfactory bulb to record M/T cell responses to time-varying odor stimuli delivered at the snout  
via the odor delivery system shown in a. Nasal airflow through the upper trachea was controlled via active suction and gated by a digitally controlled 
solenoid valve (red). Dotted line represents ON-OFF state of suction valve. Respiration was monitored by a thermocouple. (d) Firing rate response of  
two simultaneously recorded M/T cells to the fluctuating stimulus pattern of amyl acetate shown in c. Raster plots show spiking output (12 trials).  
Black bands represent individual spikes, plotted at 1-ms resolution. Peristimulus time histograms (PSTHs) show the corresponding average firing rate 
(black). Gray bands in the PSTH indicate one s.e.m. Dashed red lines mark period with suction on. Green bars mark odor ON periods. For c,d: M/T cells, 
n = 130; rats, n = 34; odors, n = 9. 
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As a first test of the model’s performance, we compared the predic-
tion error (residual) to the intertrial variability (noise) in the observed 
response, using a published metric34 (Online Methods). We calculated 
prediction error as the mean squared difference between the predicted 
and observed mean firing rate for a given stimulus pattern. 95% of 
our predictions had a residual error smaller than the intertrial noise 
(1,962 out of 2,062; left tail t-test, P > 0.05; Supplementary Fig. 3a), 
indicating that the predicted firing rate approximated the average 
firing rate response of the cell within one s.d. (Fig. 2d).

Given the low average signal-to-noise ratio in M/T cell odor 
responses (0.56 ± 0.28, median ± s.d., Fig. 2d), residuals smaller than 
the intertrial noise may not necessarily reflect a good estimation of 
the mean response profile. To obtain a more intuitive estimate of the 
model’s performance, we calculated: (i) the correlation coefficient (r) 
between the predicted and observed response (Online Methods) and 
(ii) the fraction of stimulus-related variance in the observed mean 
response explained by the model (fraction of variance explained (fve); 
Online Methods). Model predictions showed high correlation with 
the observed response (0.68 ± 0.23, median ± s.d., Fig. 2e), explaining 
on average 70% of the response variance (0.69 ± 0.25, median ± s.d.,  
Fig. 2f), even for M/T cell odor responses with low signal-to-noise 
ratio (Supplementary Fig. 3b). The correlation between the model 
predictions and observed mean firing rate response was consist-

ently higher than the pairwise correlation across individual trials 
(Supplementary Fig. 3b). Together, these metrics (Fig. 2d–f) indicate 
that a linear model is a better estimator of the mean response of the 
cell than individual trials.

Thus, linear summation of impulse response kernels accounts for 
the majority of the variance in observed M/T cell responses to fluc-
tuating odor stimuli.

Most M/T cell odor kernels are concentration dependent
For a subset of cells (n = 19), we repeated the stimulus series at mul-
tiple concentrations to examine whether responses remained linear 
across a larger odor concentration range. For each odor-cell pair, we 
interleaved presentations of the same stimulus patterns at two (8 cell-
odor pairs) or three (11 cell-odor pairs) different peak odor concentra-
tions (ranging from 0.4% to 3.5% saturation) (Supplementary Fig. 4).  
We estimated kernels independently at each concentration using nor-
malized stimulus (PID) waveforms (Fig. 3a). The PID waveform for 
a given concentration was normalized by the maximum PID signal 
observed across all stimulus patterns presented for that particular 
concentration. In this scenario, if M/T cell odor responses remained 
linear across concentrations, the kernels estimated at different  
concentrations would be identical in shape and differ in ampli-
tude proportional to the relative stimulus strengths at the different  
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Figure 2 Linear summation of inputs predicts 
M/T cell responses to time-varying odor 
patterns. (a) Schematic of the linear model.  
The M/T cell response is calculated by 
convolving the odor kernel with the odor 
waveform (measured via PID). Negative firing 
rates are rectified after addition of the pre-odor 
baseline. Vertical bars mark odor ON periods. 
(b) Estimated odor kernels of three example 
M/T cells. Odors used are indicated on the left 
of each kernel. Odors were delivered at 1% 
saturation. (c) Comparison of model predictions 
and observed responses of the M/T cells in b to 
various time-varying odor stimuli. Vertical green 
bars mark odor on periods. Black lines show the 
observed mean firing rate across 12 trials. Gray 
bands indicate s.e.m. Red lines shows the non-
rectified prediction from the model using the 
estimated kernels shown in b. M/T cells, n = 76; 
odors, n = 8; stimulus patterns, n = 1,114.  
(d) Summary plot showing comparison of the 
residual error between predicted and observed 
firing rates with the trial-to-trial variation (noise) 
in the observed response. Each black dot 
represents one stimulus pattern in a scatter  
plot of signal/residual  against signal/noise .  
Points lying above the slope of unity (dashed 
black line) indicate that deviation of the fit 
from the mean is less than the trial-to-trial 
variability in the response. M/T cells, n = 130; 
odors, n = 9; stimulus patterns, n = 2,062 
stimulus patterns. Colored circles correspond 
to the responses of the three example M/T cells 
shown in c (red = cell no. 96, yellow = cell no. 
104, blue = cell no. 102). Marginal histograms 
show distribution of signal/noise (top) and 

signal/residual  (right) across all cell-stimulus 
pairs. Black histogram on right corresponds to residuals obtained when the responses were predicted by cross-validation. Blue histogram corresponds to 
residuals obtained when the predicted responses were part of the training data set. ± indicate median and s.d. (e) Summary histogram of the correlation 
coefficient (r) between the predicted and observed mean firing rate response for all cell-stimulus pairs. Histograms correspond to the correlations 
obtained for cross-validated (black) and training data sets (blue). ± indicate median and s.d. (f) Summary histogram of the fraction of variance explained 
(fve; Online Methods) by the model across all cell-stimulus pairs. Histograms correspond to the correlations obtained for cross-validated (black)  
and training data sets (blue). ± indicate median and s.d.
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Figure 3 M/T cell odor responses scale  
nonlinearly with odor concentration  
while maintaining linearity across time.  
(a) Estimated response kernels (left)  
and observed and predicted firing rate  
responses (right) of three M/T cells  
across different concentrations of  
the same stimulus pattern. Response  
kernels (red) estimated independently  
at each odor concentration (left).  
Dotted black lines show the expected  
kernel shape at the higher concentration  
by linear scaling of the kernel at the  
lower concentration. Odors and  
concentrations used are indicated along  
with each kernel. Observed and predicted  
responses of the M/T cells in pseudo-random odor pulse sequences delivered at different peak stimulus concentrations (right). Vertical green bars mark odor 
on periods. Black lines show the observed mean firing rate across 12 trials. Gray bands indicate s.e.m. Red lines show the non-rectified prediction from the 
model using the estimated kernels in a. (b) Point-by-point comparison of pairs of kernels estimated at two odor saturations. Panels correspond to kernel pairs 
shown in a. Red line shows the best-fit line from linear regression. The slope of the regression line indicates the concentration-dependent scaling of kernel 
amplitudes. Dashed black line indicates the slope of unity. Slopes of 1, <1 and >1 indicate linear, sublinear and supralinear scaling, respectively. Regression 
statistic (R2) indicates degree of similarity in kernel shape, independent of scaling. R2 of 1 indicates identical kernel shapes at the two concentrations. 
(c) Scatter plot of amplitude similarity (slope) and shape similarity (R2) for all pairs of kernels estimated at two odor concentrations. Scatter along x axis 
represents differences in kernel shapes. Scatter along y axis represents concentration-dependent amplitude scaling. Left graph corresponds to kernel pairs 
at 0.4 versus 1% odor saturation (odor-cell pairs, n = 15). Right graph corresponds to kernel pairs at 1 versus 2% odor saturation (red dots; odor-cell pairs, 
n = 4) or 1 versus 3.5% odor saturation (blue dots; odor-cell pairs, n = 11). (d) Summary plot showing comparison of the residual error between predicted 
and observed firing rates with the trial-to-trial variation (noise) in the observed response at different odor saturations. Each dot represents one stimulus-
concentration pair in a scatter plot of signal/residual  against signal/noise. Points lying above the slope of unity (dashed black line) indicate that deviation 
of the fit from the mean is less than the trial-to-trial variability in the response. Stimuli, n = 320; concentration pairs, n = 30; M/T cells, n = 19. Marginal 
histograms show distribution of signal/residual  (top) and signal/noise (right) across all cell-stimulus pairs at different odor saturations. ± indicate median 
and s.d. (e) Summary histogram of r between the predicted and observed mean firing rate response for all cell-stimulus pairs at different odor saturations.  
(f) Summary histogram of fve by the model across all cell-stimulus pairs at different odor saturations. For d–f, red = 0.4% saturation; blue = 1–2% saturation; 
purple = 3.5% saturation. ± indicate median and s.d., and n.s. indicates no significant pairwise difference. Two-sided Wilcoxon rank sum test, P > 0.05.
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Figure 4 M/T cell response to binary odor  
mixtures is a sum of responses to the components.  
(a) Schematic of the summation model for  
binary odor stimuli. M/T cell response to binary  
combinations of odor A and B was calculated  
as a sum of predicted responses to each odor  
stimulus presented individually. (b) Estimated  
odor kernels (left) and observed and predicted  
firing rate responses (right) of two M/T cells to  
pseudo-random fluctuating patterns of two odors  
presented individually as well as simultaneously  
in the form of fluctuating binary odor mixtures.  
The two independently estimated response kernels for each component odor (left, red and black) in the fluctuating binary mixture are overlaid for convenient 
comparison of relative amplitudes and temporal dynamics across the two component odors. Odors used are indicated above each kernel. Odors were delivered 
at 1% saturation. On the right, observed and predicted mean firing rate response of the two M/T cells to pseudo-random fluctuating patterns of the two 
component odors and to their fluctuating mixture combination are depicted. Predictions for individual odor responses were obtained using kernels shown on 
the left. Predictions for the fluctuating mixture combination were obtained by summing up the predicted response to each of the two individual odor stimulus 
patterns. (c) Estimated odor kernels (left) and observed and predicted firing rate responses (right) of two M/T cells to individual pulses of two odors presented 
independently, as well as in combination, at different temporal lags. The independently estimated response kernels for each component odor (left, red and black) 
in the fluctuating binary mixture are overlaid for convenient comparison of relative amplitudes and temporal dynamics across the two component odors. Odors 
used are indicated above each kernel. Both odors were delivered at 1% saturation. On the right, observed and predicted mean firing rate response of the two  
M/T cells to individual pulses of two odors presented independently, as well as in combination, at different temporal lags are depicted. Predictions for individual 
odor pulses were obtained using kernels shown on the left. Predictions for the stimuli in which both odors were presented were obtained by summing up the 
predicted response to each of the two individual odor pulses. (d) Summary plot showing comparison of the residual error between predicted and observed firing 
rates with the trial-to-trial variation (noise) in the observed response across all stimuli containing binary odor combinations. Each dot represents one stimulus 
pattern in a scatter plot of signal/residual  against signal/noise. Points lying above the slope of unity (dashed black line) indicate that deviation of the fit 
from the mean is less than the trial-to-trial variability in the response. 314 stimulus patterns, 48 M/T cell-mixture pairs. Red, yellow, cyan and brown circles 
correspond to the responses of the four example M/T cells shown in b,c. Marginal histograms show distribution of signal/noise (top) and signal/residual  
(right) across all cell-stimulus pairs. ± indicate median and s.d. Left tail t-test, P > 0.05. (e) Summary histogram of r between the predicted and observed mean 
firing rate response for all cell-stimulus pairs containing binary odor combinations. ± indicates median and s.d. (f) Summary histogram of fve by the model across 
all cell-stimulus pairs containing binary odor combinations. ± indicates median and s.d. For a–c, vertical green bars indicate on periods for odor A; vertical tan 
bars indicate on periods for odor B; blue indicates periods when the two odors were presented simultaneously (binary mixture). For b,c, black lines show the 
observed mean firing rate response across 12 trials; gray bands mark s.e.m.; red lines show model predictions. M/T cells, n = 47; patterns, n = 314; odors, n = 9.
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concentrations. For example, the kernel at 2% concentration  
would be identical to the kernel at 1% concentration but doubled  
in amplitude.

For each concentration pair, we plotted the two kernels point by 
point against each other and used simple regression to calculate the best 
linear fit between the two kernels. This allowed us to assess changes 
in both overall kernel shape (correlation statistic (R2)) and ampli-
tude (slope of the regression line) for each pair of kernels (Fig. 3b). 
According to this metric, perfect linear scaling would be indicated by 
a slope as well as correlation coefficient of unity. M/T cell odor kernels 
in our data set (30 cell-odor pairs) showed both linear and nonlinear 
transitions in shape, as indicated by the wide distribution of correlation 
coefficients (Fig. 3c). Further, even when kernels remained similar in 
shape, responses did not scale linearly in proportion to the change in 
odor concentration (Fig. 3c). Although the amplitude scaling of the 
kernels at all concentrations was sublinear, the departure from simi-
larity in kernel shape across concentrations was more pronounced at 
transitions between lower concentrations (0.4–1%) (Fig. 3c). Across 
higher concentrations (1–3.5%), the kernel shapes remained quite 
similar (Fig. 3c). Notably, despite sublinear scaling and changes in 
kernel shape, the linear model reliably predicted firing rate responses 
at each independent concentration (Fig. 3d–f).

These results (Figs. 2 and 3) suggest that individual M/T cells integrate 
fluctuating inputs of a given odor linearly in time, across all sampled  

concentrations, but the kernel shapes may change nonlinearly across 
concentrations (see Discussion).

Response to binary odor mixtures is the sum of components
We presented pseudo-random patterns34 of two different odors 
simultaneously (Supplementary Fig. 5) to explore summation of 
both co-incident and temporally separated odor inputs (Fig. 4a). 
Summation of predicted responses to the individual odor patterns 
accurately accounted for the response to the superimposed pres-
entation of the two odor patterns (Fig. 4b,c). Using pairs of pulses 
that overlap for different durations30, we verified that summation of 
responses accounted for the observed response independent of the 
temporal overlap between the two odors (Fig. 4c). In 89% of cases 
(279 out of 314 stimuli), the prediction error was less than intertrial 
noise in the observed response (left tail t-test, P > 0.05, Fig. 4d and 
Supplementary Fig. 6a). Further, the correlation between the observed 
and predicted responses, as well as the stimulus-related variance  
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Figure 5 Linear summation predicts respiration tuning of M/T cell odor 
responses. (a) Schematic of the linear model for respiration. The odor-
evoked change in firing rate of an M/T cell (blue) upon odor presentation 
(indicated by gray boxes) was calculated by convolving the odor kernel 
(estimated from odor responses in the tracheotomized rat) with the 
respiration waveform (measured via a pressure sensor in the free-
breathing condition). For the convolution, the exhalation component 
(yellow shading) was discarded and only the inhalation component 
(green shading) of the respiration was used as a measure of the positive 
odor influx in the nose. The predicted odor-evoked change in firing rate 
(blue) was summed with the observed (measured) baseline respiration-
tuned response of the M/T cell (black, air periods) and thresholded to 
discard negative firing rates to obtain the predicted respiration-tuned 
odor response of the M/T cell (red). (b) Estimated odor kernels (top) and 
comparison of the observed and predicted respiration-tuned odor response 
(bottom) of three M/T cells. Odor kernels were estimated for each M/T 
cell from responses to time-varying stimuli delivered when the animal 
was tracheotomized (top left schematic). Odors used are indicated above 
each kernel. Odors were delivered at 1% saturation (top). Baseline (air) 
and odor-evoked (odor on) respiration-tuned responses of the M/T cells 
measured after reconnecting the tracheal loop (middle left schematic). 
Respiration was measured using a pressure sensor connected in the 
tracheal loop. Respiration-tuned responses are shown as spike rasters 
and PSTHs across 12 respiration cycles each during the air period and 
the odor on period. Vertical lines in spike raster show individual spikes, 
plotted at 1-ms resolution. Black lines in the PSTH show mean firing 
rate across 12 cycles. Gray bands indicate s.e.m. The average pressure 
sensor waveforms (respiration) are shown in black above the spike rasters. 
Predicted respiration-tuned odor response (red lines) was calculated using 
the linear model described in a. (c) Summary histogram of r between 
the predicted and observed respiration-tuned odor response for all cell-
odor pairs. ± indicates median and s.d. Analysis includes only the first 
respiration cycle after odor onset. (d) Summary plot showing comparison 
of the residual error between predicted and observed respiration-tuned 
odor response with the trial-to-trial variation (noise) in the observed 
response across all cell-odor pairs. Each dot represents one cell-odor pair 
in a scatter plot of signal/residual against signal/noise. Points lying 
above the slope of unity (dashed black line) indicate that deviation of the 
fit from the mean is less than the trial-to-trial variability in the response. 
Cell-odor pairs, n = 43; M/T cells, n = 19; odors, n = 6. Analysis includes 
only the first respiration cycle after odor onset.
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explained by the model, remained high across all cell-mixture pairs 
(Fig. 4e,f and Supplementary Fig. 6b), even when the kernels for the 
two odors composing the mixture were different in temporal dynam-
ics (Supplementary Fig. 6c–e).

Taken together, these results (Figs. 2 and 4) support linear encod-
ing of time-varying inputs of individual odors and their binary odor 
combinations across both inhibitory and excitatory responses.

Linear transform of odor inputs predicts respiration tuning
We next asked if kernels estimated in the tracheotomized animal could 
predict the odor-evoked response during respiration-modulated sam-
pling (Fig. 5a). We recorded odor responses of individual M/T cells 
during both tracheotomized and free-breathing conditions (Fig. 5b 
and Online Methods). We predicted the odor-evoked change in firing 
rate of a cell by convolving the estimated kernel (from responses in 
the tracheotomized rat; Fig. 5b) with the average ‘inhalation’ wave-
form measured using a pressure sensor (Online Methods). To this 
predicted response, we added the average respiration-tuned baseline 
firing of the cell, measured from the respiration cycles preceding odor 
 presentation (air periods) (Fig. 5a and Online Methods). The resulting 
outcome accurately captured the strength as well as the respiration- 
locked timing of both odor-evoked excitation and inhibition across 
multiple respiration cycles (Fig. 5b). For quantification, we consid-
ered only the first respiration cycle after odor onset because it was 
best aligned to odor delivery.

The model predictions showed high correlation with the observed 
respiration tuning (Fig. 5c) and matched the respiration tuning 
within noise limits of intercycle variability (residual < noise, 28 out of  
43 cell-odor pairs, left tail t-test, P > 0.05; residual = noise, 14 out of 

43 cell-odor pairs, two-sided t-test, P > 0.05) (Fig. 5d). These results 
represent the lower boundary of the model’s performance, given two 
factors that reduce the model’s predictive power: (i) poor knowledge 
of underlying inhibition strength in the baseline respiration tuned 
response (zero firing periods) and (ii) use of pressure sensor output 
as a proxy for nasal odor concentration.

Thus, the well-known respiration tuning of odor responses emerges 
from and is predicted by the convolution of odor impulse responses 
with the respiratory cycle.

Linear model predicts key temporal aspects of M/T cell responses
We next tested whether the model explains other M/T cell response 
properties reported previously in awake, freely breathing rodents. 
Specifically, we focused on two recent findings: (i) sniff frequency-
invariant latency of M/T cell responses37 in awake, behaving rats and 
(ii) tiling of respiration cycle by M/T cell odor responses38 in awake, 
head-fixed mice.

We calculated the latency of M/T cell responses at various sniff 
frequencies by convolving the kernels in our data set with canonical 
sniff waveforms recorded by Cury et al.37 during slow (~2 Hz) and 
fast (~7 Hz) sniffing (Fig. 6a). Consistent with Cury et al.37, we found 
that the response latency of a given M/T cell was largely unaffected 
by sniff frequency (Fig. 6a). Several studies have proposed a latency 
code for odor identity in the olfactory system. Different odor-specific 
latencies across M/T cells emerged from diversity in kernel shapes 
both across odors and cells (Fig. 6a). Interestingly, our results sug-
gest that sniff-frequency invariance of M/T cell response latency may 
not require specialized circuit mechanisms and instead simply result 
from stereotypy in inhalation onset time courses (similar slope) across 

Figure 6 Model predictions of M/T cell response properties and kernel 
diversity. (a) Model predictions of M/T cell response latency during slow 
and fast sniffing. Top left, sniff waveforms recorded in awake, behaving 
rats. Data adapted from Cury et al.37. Red and blue traces indicate 
periods of slow (~2 Hz) and fast (~7 Hz) sniffing that were used for 
calculating response latencies in bottom middle and bottom right graphs. 
Gray boxes indicate odor presentation (top left image of a reproduced 
with permission from ref. 41). Top right, stereotypy in inhalation onset 
dynamics of individuals sniffs from the sniff waveforms shown in top 
left image. Sniffs were aligned by time of inhalation onset. Bottom left, 
example odor kernels of two M/T cells. Bottom middle, response of the 
M/T cells in bottom left graphs during slow sniffing (red) and fast sniffing 
(blue), predicted by convolution of the kernels with the respiration 
waveforms in top left image. Dashed lines indicate the first peak in firing 
rate after inhalation onset. Bottom right, comparison of response latencies 
of predicted M/T cell odor responses during slow and fast sniffing. Each 
dot represents the ratio of predicted response latency at ~7 Hz and ~2 Hz 
for a given odor kernel (n = 208). Most dots lie on the black line, which 
indicates a ratio of unity. (b) Predicted M/T cell firing phase responses 
tile the full respiration cycle. Top, color map showing preferred respiration 
phase of M/T cell firing across all recorded M/T cells. Each row represents 
predicted odor-driven, respiration-tuned response for a given odor kernel 
(n = 208). Color indicates the firing rate. Responses are sorted (bottom 
to top) in increasing order of preferred firing phase from inhalation onset. 
The x axis represents one respiration cycle (duration 1 s) beginning 
with inhalation, binned uniformly into 20 phase bins. Color indicates 
instantaneous firing rate in hertz. Bottom, circular histogram of preferred 
phases of predicted M/T cell odor responses shown in top image. Dotted 
concentric circles indicate intervals of 25 M/T cells. (c) Diversity of 
M/T cell odor kernels. Top, classification of parameterized M/T cell odor 
kernels into eight distinct families via hierarchical clustering. Colors show 
the individual kernels within each family. Kernels are aligned by time of 
peak response and normalized by the peak amplitude. Relative abundance of each type is indicated as percentage of all kernels. Bottom left, histogram 
of response latency of the parameterized odor kernels. ± indicates median and s.d. Bottom right, histogram of response duration of the parameterized 
odor kernels. ± indicates median and s.d.
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various sniff frequencies, despite differences in amplitude and dura-
tion of individual sniffs (Fig. 6a; also see sniff waveforms reported 
in refs. 39,40).

We analyzed the tiling of the respiration cycle by sorting the pre-
dicted respiration-tuned responses of all kernels by their preferred 
phase of firing in the respiration cycle. This revealed a broad distri-
bution of preferred respiration phases that spanned both inhalation 
and exhalation, with a bias toward inhalation, similar to that reported 
by Shusterman et al.38 (Fig. 6b). Systematic characterization of the 
kernel diversity using parametric analysis and hierarchical cluster-
ing revealed 8 distinct families (Fig. 6c). Kernels within each family 
differed only in overall amplitude but had similar time courses. On 
average, we found 64% primarily excitatory and 36% primarily inhibi-
tory kernels with a median response latency of 50 ± 96 ms and average 
duration of 750 ± 247 ms (Fig. 6c).

Our observations suggest that the broad distribution of M/T cell 
firing across the respiratory cycle, with sniff-frequency invariant 
response latencies, results from the linear convolution of diverse M/T 
cell odor kernels with stereotypic inhalation onset dynamics.

DISCUSSION
We used precisely controlled, time-varying odor stimuli and respira-
tion-decoupled odor sampling to characterize M/T cell responses to 
fluctuating inputs of individual odors and their binary mixtures (Fig. 1).  
We found that individual M/T cells linearly sum inputs of a given 
odor across time (Figs. 2 and 3). Responses to binary mixtures reli-
ably matched the sum of responses to the individual odors (Fig. 4). 
Using reversible tracheotomy, we showed that respiratory patterning 
and sniff-frequency invariant latency of M/T cell firing are emergent 
properties of linear summation, diverse M/T cell response kernels 
and respiratory cycling (Figs. 5 and 6).

Comparison with previous work
Our results are in contrast with previously reported nonlinear sum-
mation properties of M/T cell homologs in the locust and zebrafish 
olfactory systems30,31,34. The differences in results may originate from 
distinct network architectures between mammals, fish and insects13, 
as well as methodological differences in stimulus control. Two 
recent studies that have applied carefully controlled odor delivery  
methods, albeit in a different model system (fruit fly ORNs), 
have reported linear integration of odor inputs by the ORNs28,29. 
Prediction failures in some studies may also be attributed to use of 
time-invariant stimuli that do not allow accurate estimation of the 
strength of inhibitory responses.

We stress that tight control of stimulus conditions was necessary to 
observe linear summation of responses. These conditions included 
the lack of flow transients during air-odor transitions, reproducibil-
ity of odor amplitude and time course, and rapid kinetics to prevent  
odor spillover between consecutive pulses. In our experience,  
deviation from this tightly controlled stimulus regime along with 
anesthesia-related instability in recordings resulted in substantial 
degradation of linearity. Although a few elegant odor delivery sys-
tems have been described recently for precise control of odor con-
centration of individual odors28,29, the odor delivery system used in  
this study is a low-cost, integrated solution for interleaved pres-
entation of deterministic, arbitrary time waveforms of individual 
odors, mixtures and concentrations at fast time scales (20 Hz). 
It is ideally suited for future behavioral experiments that require 
interleaved presentations of multiple odors (or concentrations) 
and rely on careful concentration control while mimicking natural  
stimulus dynamics.

A biophysical basis for bulbar linearity
M/T cells receive direct excitatory input from a principal parent 
glomerulus and lateral excitatory and/or inhibitory inputs from other 
glomeruli via local interneurons. This circuit is highly nonlinear: both 
the odorant receptor response properties41,42 and the responses of 
individual M/T cells16,22,23 are nonlinear. In principle, the cross-cou-
pling of glomeruli through local inhibitory networks could simply 
shut off mitral cells, which is a rectifying nonlinearity.

Linearity may nevertheless emerge from a more nuanced analysis 
of bulbar network experiments and network theory. Mitral cells show 
activity-dependent cross-inhibition43. This implies that inhibitory 
effects from other glomeruli are not binary shutdown operations but 
activity modulations. Furthermore, the structure of the inhibitory 
network introduces negative feedback onto M/T cells through recip-
rocal dendro-dendritic synapses, both through juxtaglomerular and 
granule cells13. Negative feedback is the classic electronic circuit motif 
for linearizing otherwise nonlinear network responses44.

Intrinsic factors such as response adaptation and saturation of 
neuronal firing could also in principle trigger nonlinear outcomes. 
Interestingly, we found that commonly reported ‘nonlinear’ tempo-
ral adaptation of M/T cell responses to strong, sustained inputs was 
well captured by linear processing, given the presence of both excita-
tory and inhibitory components in individual M/T cell kernels. For 
example, the strength of odor-evoked excitation, as well as inhibition 
(Fig. 2c), often decayed systematically across time for odor pulses 
lasting up to 2 s. However, this response decay was accounted for by 
the inhibitory period in the M/T cell kernel following excitation for 
cell no. 96 (Fig. 2b) and conversely by the excitatory bump following 
odor-evoked inhibition for cell no. 104 (Fig. 2b). The same mecha-
nism may prevent M/T cells from reaching their maximal (saturating) 
firing rates, explaining the lack of saturation-related nonlinearities 
in our data set.

At the single-cell level, we predict that the summation of inhibitory 
and excitatory currents on M/T cells directly maps onto the sum-
mation of negative and positive regions of response kernels in our 
model. This is consistent with the overlap of predicted ‘negative firing 
rates’ with periods of experimentally observed zero spiking, indicat-
ing the presence of underlying inhibitory currents. We propose that 
the kernel shape itself is determined by the summed contribution 
of all glomeruli (connected to the M/T cell) activated by the odor at 
any particular concentration. Future experiments using optogenetic 
mapping17 of the glomerular receptive field of M/T cells coupled with 
intracellular recordings from M/T cells will allow direct testing of 
this hypothesis.

Implications of nonlinear concentration dependence
We found that M/T cells linearly integrate inputs of a given odor 
across time, at both low (0.5% saturation) and high (3.5% saturation) 
extremes of the tested concentration range. However, kernel dynamics 
varied nonlinearly across concentrations (Fig. 3c). We suggest that 
this deviation from linearity arises because different glomeruli differ 
in their sensitivity to a given odor. With increasing odor concentra-
tion the glomerular activity map changes both spatially and tempo-
rally8–10,12: the additional odor-responsive glomeruli modulate the 
responses of mitral cells through the bulbar network, thus altering 
their response kernels. However, given the overall high sensitivity 
of olfactory receptors, recruitment of new glomeruli is more likely 
when concentrations jump from low to mid-range (from 0.4% to 1% 
in our study), as indicated by more frequent nonlinear alterations 
in kernel shape within this concentration range (Fig. 3c). At higher 
concentrations, the recruited glomerular pattern is relatively stable, 
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but responses of individual glomeruli may saturate, mostly result-
ing in sublinear scaling of kernel amplitudes with less impact on the 
overall kernel shape (Fig. 3c).

How do responses to odor mixtures remain linear, given that 
presentation of multiple odors would in principle recruit additional 
glomeruli? We suggest that linearity of responses to mixtures is main-
tained because of the sparse nature of glomerular odor representa-
tions11,45, which results in little overlap between sets of activated 
glomeruli in mixtures. In situations in which the glomerular overlap 
between the two odors is high, or in the extreme case when the two 
components are identical (same odor added to itself equals higher 
concentration of a given odor), the summation of observed responses 
would not remain linear.

How is linearity maintained for any time-varying stimulus given 
that the odor concentration swings between zero and a set peak 
value? Should not these concentration excursions also introduce 
nonlinearities? Given the fast kinetics of our odor delivery system, 
the concentration transitions to within 80% of the peak value in  
<40 ms. Intermediate concentrations thus constitute only a small frac-
tion of the total ‘on’ stimulus time. Fast time-scale changes in odor 
concentration are typical of both natural odor plume statistics and 
inhalation-dependent odor sampling, suggesting that simple linear 
integration may well apply under naturalistic conditions. This is con-
sistent with the accurate model predictions of both amplitude and 
time-course of responses in free-breathing rats in our study, despite 
different nasal flow rate conditions in the tracheotomized versus free-
breathing state.

There still remains the question of how animals identify an odor 
across discrete encounters at widely different concentrations, such as 
are commonly encountered in nature. Our data rule out the simplest 
model for odor identification, in which only a single kernel per odor 
per cell is needed, provided it scales linearly with concentration. The 
slightly less general model, in which a single kernel scales nonlinearly, 
accounts for a few but not all cases. Instead, we propose that odor rec-
ognition requires knowledge of a concentration profile of kernels for 
each odor. One possibility is that the olfactory system extracts odor 
identity by learned mapping of multiple impulse response functions 
to a given odor on the basis of previously encountered concentrations 
through local processing in the cortex or via feedback to the olfactory 
bulb. This is consistent with observations of perceptual discontinuity 
in odor recognition at extreme concentrations. Another possibility 
is that pooling multiple M/T cells onto cortical neurons averages out 
cell-specific dependencies on odor concentration, yielding a concen-
tration-invariant impulse response for the pooled population. Similar 
mechanisms for concentration-invariant decoding of odor identity 
have been proposed in the invertebrate olfactory system32,33,46. Future 
work combining behavior and circuit analysis will help disambiguate 
these possibilities and establish a complete model for decoding stimu-
lus identity, intensity and timing in the olfactory system.

Together our results imply that a complete model of bulb input-
output transform requires knowledge of the concentration-profile of 
response kernels in addition to the basic mechanism of linear summa-
tion. Nonlinearities in responses are inevitable for any sensory circuit 
given the intrinsic nature of neuronal firing (action potentials) and 
the mismatch between the range of stimulus intensities and that of 
neuronal firing rates. The striking aspect of our findings is that despite 
these factors, M/T cell responses are linear across a wide range of tem-
poral variations in odor stimuli (tracheotomized as well as free breath-
ing) and their binary combinations. It is important to emphasize that 
the proposed linear model is in no manner complete, and it needs to 
be further tested in awake animals in which context-dependent brain 

states play substantial roles in shaping the response properties of M/T 
cells. Nevertheless, this minimal framework captures a wide spectrum 
of fundamental response features of the olfactory bulb, accounting 
for the classical sniff-locked firing of OB neurons and the diversity in 
responses to odor mixtures and transients in odor plumes.

Insights from the model: how respiration aids bulbar coding
Since the first recordings in the mammalian olfactory system, M/T 
cell odor responses have been shown to be time locked to respira-
tion14,15. Given that respiratory sampling is the ‘natural’ condition, 
there has been relatively little interest in more artificial airflow pro-
tocols. However, respiration frequencies vary over a wide range, so 
this ‘natural’ condition is hardly singular. We argue that the basic 
circuit response is defined by, and best studied in terms of, impulse 
responses. Below we consider cases in which this point of view may 
offer some insights.

Respiration tuning from odor-specific impulse responses, invari-
ant of the sniff frequency. The diverse repertoire of M/T cell respira-
tory tuning17,38 can be predicted as an emergent outcome of M/T cell 
impulse responses (kernels) convolved with respiration-modulated 
odor influx through fast or slow sniffs. Our model predicts that 
response latency of M/T cells is odor specific and invariant of the 
sniff frequency, providing a substrate for temporal encoding of odor 
identity in the M/T cell response latencies. Interestingly, we find that 
the invariance of response latency to sniff frequency results from 
strikingly conserved dynamics of inhalation onsets across fast and 
slow sniffs. We propose that the olfactory system utilizes stereotypy 
in inhalation dynamics in conjunction with respiratory cycling of 
diverse M/T cell kernels to facilitate latency coding of odor identity, 
invariant of changes in sniff patterns.

Intermittent inputs improve system performance. Analytical stud-
ies have suggested that the spatiotemporal structure of plumes may 
encode source-related information47,48. Though stimulus intermit-
tency has been demonstrated to be behaviorally relevant for odor 
tracking2,49,50, it remains unclear how the olfactory system evaluates 
odor plume statistics. In our analysis, the ‘inhibitory’ components 
of the response kernels were unmasked only in response to rapidly 
fluctuating stimuli. In steady state, these inhibitory components 
lead to zero firing. When the stimulus fluctuates, the excitatory and 
inhibitory components overlap, and the subtleties of the inhibitory 
components are unmasked as modulations of the excitatory com-
ponents. Thus, from the viewpoint of our model, the olfactory sys-
tem can linearly decode the contributions of the dense inhibition in 
the network precisely because of the intermittent nature of inputs. 
Along the same lines, we suggest that the respiratory cycle, far from 
being a sampling constraint on olfaction, improves sensitivity and 
discrimination by introducing natural pulsatile sampling. Although it 
is challenging to externally modulate sniff rates in the awake animal, 
optogenetic stimulation of glomeruli at different temporal frequencies 
during behavior may allow analysis of odor identification acuity as a 
function of stimulus intermittency.

Our findings provide a concise framework for the input-output 
function of the olfactory bulb, explaining most of the variance in 
the bulb responses. We propose that, at the single-neuron level, a 
major computational function of the olfactory bulb is to linearize 
signals and convolve them in time with a palette of odor-specific 
impulse-response functions. This raises interest in further under-
standing how this linear transform is achieved given the complexity 
of local microcircuits in the bulb and feedback from other brain areas. 
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Furthermore, these results provide a simple mathematical abstraction 
of the bulb inputs to the olfactory cortex, opening new avenues for 
studying downstream processing of olfactory information.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
odor stimuli. Odor stimuli were delivered via a custom-designed odor  
delivery system (Fig. 1a) optimized for reproducible and fast stimulus  
kinetics and absence of pressure transients associated with stimulus presentation 
(Supplementary Fig. 1).

Basic design of the odor machine. To achieve linear odor output, we used nitro-
gen-borne or airborne saturated odor streams diluted serially by clean air. The 
input rate into the odor vials was regulated at 0.5 l/min using acrylic block flow 
meters (EW-32460-40, Cole-Parmer). Two independently controllable channels 
were used to deliver binary odor combinations in any desired overlapping or 
non-overlapping temporal sequences. In each channel, saturated odor vapor was 
produced by bubbling the carrier nitrogen (or air) stream through a glass vial 
containing undiluted, liquid odor (Fig. 1a). Odor selection was done using a 
digitally controlled solenoid valve assembly that channeled the stream through 
any one of four odor vials at a time (Fig. 1a). Glass beads were immersed in the 
odor to aid saturation and prevent aerosol formation. The saturated vapor was 
brought to 10% dilution by mixing with a 5 l/min stream of charcoal filtered and 
dehumidified air. Only 0.5 l/min of this odorized stream was directed further to 
the final manifold; the rest was ejected through the exhaust (Fig. 1a). One-way 
check valves were used to prevent backflow of the diluting air stream into the 
odor vial. The final manifold was a custom-designed assembly of four input 
channels, each of which bifurcated into two output channels gated by four pairs 
of digitally controlled solenoid valves (ET-2M-12, Clippard) mounted on the 
manifold. One of the output channels was directed to the rat and the other to the 
exhaust (Fig. 1a). Simultaneous switching of the diluted odor streams between 
valves gating the rat and the exhaust channel allowed rapid turning on and off of 
odor without introducing backpressure in the system (reduced flow transients). 
Further, for each odor stream, we used a flow-rate–matched clean air stream that 
also switched between rat and exhaust in a complementary fashion to keep the 
net output flow rate of the channels unchanged. To further minimize the pressure 
transient at the switch, the input flow rate of the four streams at the manifold was 
kept low and fixed at 0.5 l/min. The output channels were flushed continuously 
with a high-flow-rate stream (5 l/min) of clean humidified air, thus leading to a 
second, tenfold dilution of the odor.

The two-step serial dilution design reduces pressure transients and gives fast 
switching as follows. Low flow rate of the odor stream at the switching point 
minimizes any pressure transients as the odor valve is turned on or off. This 
is important to avoid mechanosensory M/T cell responses35. The subsequent 
dilution with a high-flow-rate air stream allows for rapid odor clearance, thus 
accelerating stimulus kinetics. To further enhance the kinetics, we used short-
length (<10 cm), narrow-diameter tubing (4 mm) at the exit port, kept a small 
distance (~1 cm) outside the animal’s snout.

Modified design of the odor machine for linear and interleaved concentration 
control. We adapted the above-described design to deliver three different con-
centrations of a selected odor within the range of 0.4–3.5% saturation to meet 
three primary conditions.

(i) Maintaining the same relative difference across the three concentrations 
irrespective of the chemical nature of the selected odor. Typically, increasing odor 
concentrations are obtained by flushing increasing flow rates through the odor 
vial. We found that the range of concentrations produced by this approach was 
highly dependent on odor chemistry and often resulted in unexpectedly supra-
linear odor output at lower flow rates for viscous odors. We bypassed this limita-
tion by using only one saturation step (flow through the odor vial) for each odor 
and distributing the saturated odor stream into different concentration banks 
(dilution 1, dilution 2, etc.; Supplementary Fig. 4a) by multiple serial dilutions. 
As a result, the relative difference between the outputs of different concentration 
banks was purely dictated by the dilution factor and did not depend on individual 
odor chemistry (Supplementary Fig. 4b–c).

(ii) Interleaving presentations of different concentrations in quick succession, 
with no cross-contamination between concentrations. To this end, we exploited 
our original design for delivery of odor mixtures and treated the output of each 
concentration bank as an independent odor, using a dedicated set of solenoid 
valves for each bank. Thus, a low-concentration trial could be presented immedi-
ately following a high-concentration trial with no spillover of odor from the previ-
ous trial. This can be appreciated in the low intertrial variability of the observed 
PID responses for different concentration trials, even when all concentrations were 
presented in a randomly interleaved sequence (Supplementary Fig. 4b–c).

(iii) Achieving low variability in the absolute odor concentration. Because 
our analysis was aimed at quantifying changes in M/T responses as a function 
of odor strength, it was critical for us to reliably maintain the absolute odor 
concentration throughout the recording duration for a given cell (~1.5 h). We 
found that depending on the volatility of different odors, the concentration may 
drop to half its original amplitude within 30 min of continuous usage (e.g., ethyl 
butyrate). However, replenishing the odor volume to match the initial amount 
in the vial immediately restored the PID readings to their original values. We 
therefore independently characterized the decay in odor concentration for each 
odor and replenished odor volumes in the vial at the appropriate frequency for 
each odor (ethyl butyrate, every 15 min; ethyl tiglate, every 30 min). This can 
be appreciated in the low variability across individual trials in the example PID 
responses in Supplementary Figure 4c. The individual trials (gray lines) for each 
concentration are randomly interspersed across a duration of 1.5–2 h.

Additionally, for the higher concentrations, care was taken to replace the valves 
periodically as the high concentration odors frequently clogged both the sole-
noid and check valves. For the same reason, we restricted the highest concentra-
tion tested in our experiments to 3.5%. At concentrations >3.5%, valves could 
be clogged even within one recording session, making the measured M/T cells 
responses unreliable.

Odors used. We used a total of nine odors: isoamyl acetate (W205532, 
Sigma-Aldrich), 1,4-cineole (W365807, Sigma-Aldrich), limonene (W504505, 
Sigma-Aldrich), methyl amyl ketone (W254401, Sigma-Aldrich), amyl acetate 
(W504009, Sigma-Aldrich), ethyl tiglate (W246018, Sigma-Aldrich), γ-terpinene  
(W355909, Sigma-Aldrich), linalool (W263508, Sigma-Aldrich) and ethyl 
butyrate (W242705, Sigma-Aldrich). The odors were chosen on the basis of 
detectable PID signals and rapid clearance from the solenoid valves and tubing 
while maintaining a diverse range of functional groups in our odor stimulus 
panel. Odors like 1-octanol, 1-hexanol, citral, etc., that did not evoke reproducible 
PID responses were excluded from the panel.

Stimulus patterns. We used a wide range of stimulus patterns to exhaustively 
characterize M/T responses to time-varying odor patterns: (i) individual pulses 
of variable duration (50, 100, 200, 500, 1,000 or 2,000 ms), (ii) non-overlapping 
pulse pairs of one or two odors (200 ms each) with variable interpulse dura-
tion (50, 100, 200, 500 or 1,000 ms), (iii) overlapping pulse pairs30 of two odors  
(500 ms each) with variable interpulse overlap duration (0, 100, 200, 300, 400 or  
500 ms), (iv) pulse trains with variable frequency (5, 10 or 20 Hz; duration  
2 s), or (v) pseudo-random fluctuating pulse trains34 (duration 5 s). The temporal 
pattern of odor valve opening and closing was described as string of 100 bits, 
in which each bit defined the binary on/off state of the valve in a 50-ms time 
period. Each bit was randomly assigned a value of 1 (on) or 0 (off) with equal 
probability. The minimum duration of an odor pulse was determined by the size 
of the smallest bin (50 ms). The maximum pulse duration was determined by 
the number of contiguous bits that were assigned the value of 1. We imposed an 
upper bound of 500 ms (10 bins) on this maximum by overriding the value of 
every 11th bin to be 0.

Stimulus characterization. We characterized the output stimulus concentration 
as a function of odor valve on/off state using a PID27 (200B miniPID, Aurora sci-
entific) placed at the odor machine outlet. Consistency of flow rate was measured 
using an anemometer (490-IS, Kurz Instruments) inserted in the path of the output 
flow 2 cm from the outlet. To characterize the kinetics (Supplementary Fig. 1a,b),  
we used 500-ms–long odor pulses and calculated the mean odor amplitude in the 
latter half of the valve on period (20 repeats per odor). We defined the on kinet-
ics as the time taken to rise from 20% to 80% of the mean odor amplitude after 
valve opening. The average on kinetics was 40.1 ± 2.8 ms. The OFF kinetics was 
conversely defined as time taken to fall from 80% to 20% of the mean amplitude 
post valve closing. Additionally, we also calculated the dead time or the fixed 
delay to reach 20% mean odor amplitude from valve opening. This was found 
to be consistent across odors (31.6 ± 1.4 ms, Supplementary Fig. 1b). To char-
acterize output linearity (Supplementary Fig. 4b), we measured the mean odor 
amplitude for 500-ms–long odor pulses (12 repeats) from randomly interleaved 
presentations of three different concentrations of each odor.

Reversible double tracheotomy and olfactory bulb exposure for extracellular 
single-unit recordings. We used standard methods described previously16 to record 
extracellular single-unit activity from the mitral cell layer in the olfactory bulb of 
tracheotomized, anesthetized female Wistar rats (250–350 g, 2–6 months old).  
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Briefly, animals were anesthetized with transient exposure to halothane fol-
lowed by intraperitoneal administration of a ketamine (100 mg/kg) and xylazine  
(10 mg/kg) mixture. Pentathiol supplements (0.25 ml, 20%) at ~1-h intervals 
were used to maintain a stable anesthesia plane (respiratory rhythm of ~1 Hz 
and lack of toe-pinch reflex) throughout the duration of the surgery and record-
ing. For detailed surgical methods, see Khan et al.16 For a subset of experi-
ments, ketamine and xylazine boosters (4 mg/kg of ketamine plus 0.4 mg/kg of 
xylazine) were used instead of pentathiol. We did not observe any degradation 
of the linear model’s performance between the two anesthesia protocols. For 
recordings during tracheotomized condition, respiration was monitored via a 
thermocouple (5TC-TT-K-40-36, Omega) placed outside the tracheal cannula 
going toward the lungs. For the reversible tracheotomy, the two tracheal can-
nulae were reconnected via a Y-shaped connector. The third arm of the con-
nector was connected to a pressure sensor (HSCDRRN002NDAA3, Honeywell 
Sensing) to monitor the respiration.

For recordings, tetrodes were slowly lowered to the mitral cell layer and 
multi-unit activity was recorded either using: (i) a custom-built amplifier  
system (10,000× amplification, 300 Hz to 6 KHz band pass filtered, sampling rate 
32 KHz) or (ii) an Intan Technologies amplifier chip (RHA1016, 200× amplifica-
tion, 300 Hz to 5 kHz band pass filtered, sampling rate 32 KHz). Single-unit data 
was extracted by spike sorting using MClust (MClust-3.5, A.D. Redish). The 
respiration waveform and the valve states of the suction, odor and exhaust valves 
were acquired simultaneously at 320 Hz.

All animal procedures were in accordance with NIH guidelines and were 
approved by Animal Care and Use Committees at the National Centre for 
Biological Sciences and Cold Spring Harbor Laboratory.

Stimulus presentation and trial structure. For recordings during the tracheot-
omized condition. Independent of the temporal structure, each stimulus presen-
tation was flanked by a blank suction period (2–3 s) before and after the odor 
stimulus. A pre-odor suction period allowed for the measurement of a stable 
pre-odor baseline firing rate after decay of any suction induced transients in firing 
rate. The post-odor suction period allowed for measurement for the stimulus-
induced response lasting after the stimulus.

Upon identification of an isolatable single unit, a test run was performed with 
randomly interleaved presentation of 200-ms–long odor pulses (12 repeats per 
odor). For each tested odor, a spike raster (time bin, 1 ms) and PSTH (time bin, 
200 ms) was plotted using a custom-written MATLAB (Mathworks) program. 
A cell was identified as being responsive to an odor upon a significant change 
in firing rate during the odor period compared with the air period (analysis 
of variance, P > 0.5). For responsive units, responses were further recorded to 
various stimulus patterns of one or more odors, or different odor concentrations 
delivered in a randomly interleaved sequence (12 repeats per stimulus pattern). 
The peak concentration of each odor was kept constant for a given set of ran-
domly interleaved stimulus patterns except when characterizing M/T responses 
across different odor concentrations. In the latter case, stimulus patterns at 2 or 
3 different concentrations were randomly interleaved.

For any given recording site, the maximum recording duration was limited 
(1–1.5 h) by the frequency of anesthesia booster administration. This was done 
to minimize anesthesia-dependent drifts that would bias our analysis. Further, 
any cells that showed a substantial change in pre-odor baseline activity and/or 
spontaneous activity throughout the recording were discarded.

For free-breathing responses. To record the same cell’s response in both free-
breathing and tracheotomized conditions, the tracheal cannulae were carefully 
reconnected. Odor stimuli were delivered as 4-s–long pulses separated by 8-s–
long intertrial intervals. Odor delivery was aligned to the exhalation onset of the 
respiration cycle preceding each odor period. At least 12 repeats were performed 
for each odor. Trials from different odors were randomly interleaved.

Preprocessing of m/t responses for the linear model. For responses during the 
tracheotomized condition. For each recorded odor-cell pair, we assigned spikes to 
individual trials by aligning to the suction onset. The stimulus pattern for each 
trial was identified using the odor valve time stamps as signatures, and trials 
were sorted by stimulus type (temporal pattern). For each stimulus pattern, the 
spikes were binned in 50-ms bins, and PSTHs were constructed by calculating the 
average firing rate across all repeats. The firing rate was smoothened by a 25-ms 
Gaussian window for display purposes but not for analysis.

For respiration-tuned responses. Using inhalation onset in each respiration cycle 
as a reference, spikes were assigned to individual respiration cycles. Using the 
odor valve state information in the acquisition program, respiration cycles were 
sorted into odor and air periods. For each respiration cycle, spikes were binned 
in 50-ms time windows. As the odor delivery was triggered on the exhalation 
onset of the respiration cycle preceding each odor period, only the first inhalation 
cycle after odor onset was considered for analysis purposes. Odor-evoked and 
baseline respiration-tuned responses were calculated by averaging across cycles 
within odor and air periods, respectively.

linear model and response predictions. Linear model for M/T responses to time-
varying odor patterns. We modeled the output firing rate response of a cell to a 
time-varying stimulus pattern of a given odor at a fixed maximum odor concen-
tration using a simple linear model and a static threshold.

PFR t K x O t x dxi i, ( )unrectified baseline= ( )⋅ −( )⋅ +
−∞

+∞

∫

PFR t
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i i
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0,             ( ) 0,unrectifiedPFR ti ≤






where PFRi,unrectified(t) = unrectified, predicted output firing rate of the cell to 
the ith stimulus pattern as a function of time (bins, 50 ms). PFRi(t) = rectified, 
predicted output firing rate of the cell to the ith stimulus pattern as a function of 
time (bins, 50 ms). K(x) = odor kernel. Odor kernel was defined as the response 
of the cell to the shortest pulse of odor at the given maximum concentration 
(bins, 50 ms).

The duration of the shortest pulse was fixed at 50 ms so as to be slower than the 
output kinetics of our odor delivery system (average on kinetics, 40.1 ± 2.8 ms, 
Supplementary Fig. 1b). Accordingly, for all our analysis, the input and output fir-
ing rates and stimulus waveforms were binned at a resolution of 50 ms. The length 
of the response kernel was fixed at 2 s. This was defined by the maximum duration 
of the post-odor suction period. Oi(t) = odor amplitude as a function of time 
measured via a PID for a given on/off sequence of the odor valve (bins, 50 ms).  
Baseline = mean firing rate of the cell in a 1-s suction window proceeding odor 
onset and averaged across all trials and all stimulus patterns.

Kernel estimation via error minimization. Using the above model, we estimated 
the odor kernel by minimizing the least squared error between the predicted and 
experimentally observed output firing rates to a select set of stimulus patterns 
(training data set).

Error unrectified= −
==
∑∑ ( ( ) ( )),EFR t PFR ti i
t

T

i

N
2

01

where EFRi(t) = experimentally observed firing rate to the ith stimulus, averaged 
across all trials (bins, 50 ms). PFRi,unrectified(t) = unrectified, predicted output fir-
ing rate of the cell to the ith stimulus pattern as a function of time (bins, 50 ms). 
Use of the unrectified predictions was essential to constrain the negative parts 
of the kernel, particularly for responses with strong odor-evoked inhibition in 
which the response itself provides little information (firing rate floors to zero) to 
efficiently constrain the kernel prediction.

The error minimization employed the Levenberg-Marquardt algorithm 
and was done using the lsqcurvefit function in MATLAB (Mathworks). High-
 frequency components in the kernel obtained as an artifact of the deconvolution 
operation were smoothened out using the Savitzky-Golay filter function (order 4,  
window size 11) in MATLAB only for display purpose. We verified that the fit 
quality of our response predictions was unaffected by smoothing the kernel.

The training data set used for kernel estimation consisted of half the stimulus 
patterns presented for a given cell-odor pair. The remaining half of the stimulus 
patterns was used as the cross-validation set to assess the model performance. 
We then repeated the process by swapping the training and cross-validation data 
sets. In this manner, we obtained two model performance estimates for each 
stimulus—one when the stimulus was part of the training set and the other when 
the stimulus was part of the cross-validation set (Fig. 2d–f).

On average, stimuli used for error minimization included individual odor 
pulses of 2 or 3 different durations (50, 100, 200, 500, 1,000 or 2,000 ms), non-
overlapping paired pulses of 200 ms each with 2 or 3 different interpulse intervals 
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(50, 100, 200, 500 or 1,000 ms) and pseudo-random fluctuating stimulus spanning 
a total duration of 5 s. We found that for a majority of cases, the predicted kernel 
did not substantially depend on the choice of the training data set. However, for 
odor-evoked responses that had high inhibition content (frequent flooring of the 
firing rate to zero), including stimuli with high-frequency content in the training 
data set, substantially boosted the accuracy of kernel prediction.

Linear model for summation of M/T responses for binary odor stimuli. We mod-
eled the output firing rate of a cell to a binary combination of two time-varying 
odor stimuli, presented either simultaneously or with a temporal offset (τ), as the 
sum of responses to the two stimuli presented individually.

PFR t PFR t PFRAB A B, , ,unrectified +( ) = ( ) +t unrectified unrectifiedd baselinet +( ) +t

PFR t
PFR t PFR t

AB
AB AB

( ) =
>,unrectified ,unrectified( ),  ( ) 0

0,               ( ) 0,unrectifiedPFR tAB ≤






where PFRAB,unrectified(t + τ) = unrectified, predicted firing rate to a binary 
combination of odor A and odor B stimulus patterns presented with a temporal 
offset of τ or simultaneously (τ = 0). PFRAB(t + τ) = rectified, predicted fir-
ing rate to a binary combination of odor A and odor B stimulus patterns pre-
sented with a temporal offset of τ or simultaneously (τ = 0). PFRA,unrectified(t) =  
unrectified, predicted firing rate to odor A stimulus pattern presented individu-
ally. PFRB,unrectified(t) = unrectified, predicted firing rate to odor B stimulus 
pattern presented individually. Baseline = mean pre-order baseline firing rate. 
PFRA,unrectified(t) and PFRB,unrectified(t) were calculated by modifying equation (1)  
as follows:

PFR t K x O t x dxA A A, ( )unrectified = ( )⋅ −( )⋅
−∞

+∞

∫

PFR t K x O t x dxB B B, ( )unrectified = ( )⋅ −( )⋅
−∞

+∞

∫

KA and KB = estimated response kernel for odor A and B, respectively. OA and  
OB = stimulus pattern of odor A and B, respectively. To calculate PFRA,unrectified(t) 
and PFRB,unrectified(t), we used response kernels that were estimated using trials 
in which only one of the two odor patterns were presented. The binary odor 
responses were never used for kernel estimation.

Linear model for respiration-tuned response of M/T cells. We defined the odor-
evoked, respiration-tuned response EFRO(t) of the cell as the odor-evoked firing 
rate of the cell during the first respiration cycle after odor onset (averaged across 
all odor periods), as a function of t:

EFRO(t) = odor-evoked firing rate as a function of time (bins, 50 ms).

The baseline respiration tuning EFRA(t) was defined as firing rate of the cell dur-
ing the penultimate respiration cycle in the air period preceding the odor onset 
(averaged across all air periods), as a function of t:

EFR tA( ) ( ,= baseline firing rate of the cell as a function time bins 50 mms)

We modeled the odor-evoked, respiration-tuned response of a cell as the sum 
of the baseline tuning EFRA(t) and the odor-driven change in the cell’s firing 
(OFR(t)) as a function of respiration.

PFR t EFR t OFR tO A( ) ( ) ( )= +  

The odor-driven change in the cell’s firing rate OFR(t) was calculated as the 
convolution of the odor-response kernel (estimated from responses in the tra-
cheotomized rat) and the respiration waveform measured by the pressure sensor 
during free breathing.

OFR t K x R t x dx( ) = ( )⋅ −( )⋅
−∞

+∞

∫ odor

where OFR(t) = predicted odor-driven change in firing rate; Kodor = odor-
response kernel of the cell, estimated from responses during the tracheotomized 

(4)(4)

(5)(5)

(6)(6)
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(8)(8)

(9)(9)

condition; and R(t) = respiration waveform, averaged across all respiration cycles 
as measured via a pressure sensor, thresholded (to discard exhalation component) 
and scaled to maximize correlation between observed and predicted respiration-
tuned odor responses.
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where PS(t) = respiration dynamics measured by the pressure sensor, as a function 
of time (bins, 50 ms). The scaling factor of 0.07 was determined empirically and 
was found to be surprisingly consistent across all rats. Of note, however, is that 
in practice this scaling factor depends on amplifier gain of the pressure sensor, 
tracheal tubing diameter, etc., and may not reflect the absolute transform of nasal 
pressure to flow rates.

Similar to the model predictions for the binary odor stimuli, the odor-response 
kernels were estimated using only the responses during the tracheotomized con-
dition. The free-breathing data were never used for kernel estimation.

estimating the quality of the model predictions for m/t cell odor responses 
during the tracheotomized condition. We used three different metrics to 
describe the model’s performance across all cell-stimulus pairs. The different 
metrics are described below. All analysis described in the subsequent sections is 
based on comparisons of the predicted firing rate (predicted at time resolution of 
50 ms) to the observed firing rate, also binned at a time-resolution of 50 ms.

Comparison of residual errors with the intertrial variability. We used a metric 
previously described by Geffen et al.34 Briefly, for a given cell-odor pair, for each 
stimulus pattern we calculated the following parameters: residual (Ri) = mean 
squared error of the fit for the ith stimulus pattern. Noise (Ni) = variance of 
the experimentally observed firing rate to the ith stimulus pattern. Signal (Si) =  
average response amplitude to the ith stimulus pattern.

R PFR t EFR ti i i t
= ( ) − ( )( )2

N EFR t EFR ti i j i
j t

= ( ) − ( )( ),
2

S EFR t EFRi i i t
= ( ) −( )2

where PFRi(t) = predicted output firing rate of the cell to the ith stimulus pattern. 
EFRi,,j(t) = experimentally observed firing rate to the ith stimulus in the jth trial. 
EFRi(t) = experimentally observed firing rate as a function of time and averaged 
across all trials.

= ( )EFR ti j j,

EFRi = mean firing rate, averaged across all trials and across all time bins

= ( )EFR ti t

For each stimulus pattern, we then plotted the ratio of S /Ri i  and S /Ni i   
(Figs. 2d, 3d and 4d). A good fit was indicated by residual errors less than the 
intertrial variability (left-tail t-test, P > 0.05) (Supplementary Figs. 3a and 6a).

Temporal correlation of predicted mean firing rate to the observed mean firing 
rate. In a regime of high trial-to-trial variability (poor signal-to-noise ratio), 
residuals smaller than noise may not necessarily imply that the predicted response 
is a good estimator of the mean response profile of the cell. To provide a more 
direct measure of the match between the model output and observed responses, 
we calculated the Pearson correlation coefficient (r) between the predicted firing 
rate and the average observed firing rate across trials for each cell-stimulus pair 
(Figs. 2e, 3e and 4e).

r
EFR t PFR t

i
i i

EFRi t PFRi t
= cov( ( ), ( ))

,( ) ( )s s
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where ri = Pearson correlation coefficient between the predicted and observed 
average response (as a function of time) to the ith stimulus. EFRi(t) = observed 
average firing rate response to the ith stimulus across t. PFRi(t) = rectified, pre-
dicted average firing rate response to the ith stimulus across t. sEFRi t( )  = s.d. of 
the observed average firing rate response to the ith stimulus across t. sPFRi t( )  = 
s.d. of the predicted average firing rate response to the ith stimulus, across t. We 
further compared r with the average pairwise correlation observed across trials 
(rtrial) (Supplementary Figs. 3b and 6b).

Fraction of stimulus-related response variance explained by the model predic-
tions. An absolute measure of a model’s success is difficult to estimate because 
of the presence of intertrial variability in experimental observations. A zero 
residual error (or r = 1) is theoretically impossible to achieve. This is because 
even the best model can only account for the stimulus-related variance in the 
observed response, still leaving out the variance induced by noise factors.  
We thus calculated an alternative metric to gauge the fraction of stimulus- 
related variance in the observed response explained by our model (fraction of 
variance explained, fve) (Figs. 2f, 3f and 4f). To account for the noise-induced 
variance, we corrected the residual error for each prediction (Ri) by subtract-
ing out the expected noise-induced variance in the observed average firing rate 
response (ηi).

fve
S R

Si
i i i

i
=

− −( )h

where
S EFR t EFRi i i t

= ( ) −( )2

R PFR t EFR ti i i t
= ( ) − ( )( )2

hi i j i
t j

fEFR t EFR t= ( ) − ( )( ),
2

where ηi = expected noise-induced variance in the observed average firing rate 
response. fEFRi, j(t) = mean firing rate response (across time) to the ith stimulus 
obtained by bootstrap selection (jth time) of an equal number of trials from the 
original trial set with replacement. fEFRi, j(t) is a ‘fake’ set of mean firing rate vec-
tors generated by randomly selecting (j times, j = 100) with replacement n trials 
from the original set of n trials for each stimulus. As a result, each fake mean is 
obtained by averaging the same number of trials (n), as in the original data set, 
with some redundancy in trials selected in any given iteration.

Interpreting the fve metric:
fve = 0: fve value of 0 is obtained when the corrected residual error (Ri – ηi) 

between the observed and predicted response is equal to the stimulus-induced 
variance in the observed response, indicating poor model performance.  
In rare cases (29/2062 for single odor predictions, and 35/314 for mixture  
predictions), fve values were negative. This can result from very large residuals 
or very small signal variance (weak responses) or both. To constrain the mod-
el’s worst performance at 0, negative fve values were thresholded at zero for all 
analysis purposes.

fve
fve fve

fvei
i i

i
=

>
≤







,   0
0,        0

fve = 1: fve value of 1 is obtained when the corrected residual error  
(Ri – ηi) is 0. This implies that the error between the observed and  
predicted responses can be fully accounted for by noise in the observed 
responses, indicating good model performance. The fve value may 
exceed 1 in cases of over-fitting (model predictions also account for some  
noise-related variance in the data).

(16)(16)

from equation (14)from equation (14)

from equation (12)from equation (12)

(17)(17)

estimating the quality of the model predictions for respiration-tuning  
m/t cell odor responses during the free-breathing condition. For analysis of 
model predictions of respiration-tuned responses, we only considered the first 
respiration cycle following odor onset. We calculated r and the ratio of S /Ri i  
and S /Ni i  using equation (15) and equations (12–14), respectively. We did not 
perform the variance analysis on this set of data. This is because the variance 
of the model predictions for respiration tuning are not only determined by the 
convolution of the odor kernels with the stimulus waveform (respiration) but also 
by constraints on accurate estimation of the baseline respiration-tuned firing rate 
of the cell during the air period. The latter substantially inflates the variance of 
the predicted response vector even though the correlation between the observed 
and predicted responses remains high.

calculation of preferred firing phase and latency of odor response. We 
extracted representative sniff waveforms in awake, behaving rats from previ-
ously published data (Fig. 6a from ref. 37). We selected 1-s long bouts of slow 
and rapid sniffing from this data. For each of these bouts, we discarded the exha-
lation periods and binned the waveforms into time bins of 50 ms to match the 
temporal resolution of the respiration waveforms to that of the estimated odor 
kernels in our data set. We obtained the firing rate response of a cell during slow 
and fast sniffing by convolving each M/T cell odor kernel with the slow and 
fast sniff bouts, respectively. Response latency (Fig. 6a) was calculated as time 
to first peak in firing rate from the onset of inhalation37. We did not explicitly 
model the change in baseline respiration tuning at different sniff frequencies. 
Baseline respiration tuning has been shown to be modulated across slow and 
fast sniffs in a manner similar to the odor-evoked component of the response, 
producing sniff-invariant latency of peak firing rate after inhalation onset. We 
thus expect that adding the baseline respiration tuning will not substantially 
alter our conclusions.

The preferred firing phase (Fig. 6b) was calculated from the predicted respira-
tion-tuned response for each M/T cell odor kernel, using the average respiration 
waveform measured via a pressure sensor during 1-Hz breathing in anesthetized 
rats in our experiments. The preferred phase was defined as the phase of the 
respiration cycle at which the firing rate was maximum38. We found that the 
distribution of preferred phases was unaffected by the absolute frequency of the 
respiration cycle used for convolution.

classification and characterization of odor kernels. To parameterize the M/T 
cell odor kernels, we described them as Gabor functions with 5 independent 
parameters (a, t, τ, f, φ).

K t a e f t
t
w( ) cos

( )

= × × + −( ) +( )
− −





t

p t f

2

2

For each M/T cell odor kernel, we found the best set of 5 parameters to minimize 
the least squared error between the parameterized kernel and the estimated kernel 
from the linear model. For classification of kernels, we calculated the pairwise 
distance between every pair of parameterized kernels.

Dist crosscorri j i jK K, max ,= − ( )( )1

Using the dendrogram function in MATLAB, we hierarchically clustered the 
kernels based on average linkage to obtain 8 families. Families with less than 2 
kernels were discarded.

For display purposes only (Fig. 6c), we normalized each kernel by its peak 
amplitude and aligned kernels within each family by time of peak. Kernel latency 
(Fig. 6c) was calculated as the time to first peak in the second derivative of the 
kernel. Kernel duration (Fig. 6c) was calculated as the time between the first and 
last peak in the second derivative of the kernel.

No statistical method was used to predetermine sample size.
A Supplementary methods checklist is available.
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